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Estimate Position and Orientation of a Ground Vehicle
This example shows how to estimate the position and orientation of ground vehicles by fusing data
from an inertial measurement unit (IMU) and a global positioning system (GPS) receiver.

Simulation Setup

Set the sampling rates. In a typical system, the accelerometer and gyroscope in the IMU run at
relatively high sample rates. The complexity of processing data from those sensors in the fusion
algorithm is relatively low. Conversely, the GPS runs at a relatively low sample rate and the
complexity associated with processing it is high. In this fusion algorithm the GPS samples are
processed at a low rate, and the accelerometer and gyroscope samples are processed together at the
same high rate.

To simulate this configuration, the IMU (accelerometer and gyroscope) is sampled at 100 Hz, and the
GPS is sampled at 10 Hz.

imuFs = 100;
gpsFs = 10;

% Define where on the Earth this simulation takes place using latitude,
% longitude, and altitude (LLA) coordinates.
localOrigin = [42.2825 -71.343 53.0352];

% Validate that the |gpsFs| divides |imuFs|. This allows the sensor sample
% rates to be simulated using a nested for loop without complex sample rate
% matching.

imuSamplesPerGPS = (imuFs/gpsFs);
assert(imuSamplesPerGPS == fix(imuSamplesPerGPS), ...
    'GPS sampling rate must be an integer factor of IMU sampling rate.');

Fusion Filter

Create the filter to fuse IMU + GPS measurements. The fusion filter uses an extended Kalman filter to
track orientation (as a quaternion), position, velocity, and sensor biases.

The insfilterNonholonomic object that has two main methods: predict and fusegps. The
predict method takes the accelerometer and gyroscope samples from the IMU as input. Call the
predict method each time the accelerometer and gyroscope are sampled. This method predicts the
states forward one time step based on the accelerometer and gyroscope. The error covariance of the
extended Kalman filter is updated in this step.

The fusegps method takes the GPS samples as input. This method updates the filter states based on
the GPS sample by computing a Kalman gain that weights the various sensor inputs according to
their uncertainty. An error covariance is also updated in this step, this time using the Kalman gain as
well.

The insfilterNonholonomic object has two main properties: IMUSampleRate and
DecimationFactor. The ground vehicle has two velocity constraints that assume it does not bounce
off the ground or slide on the ground. These constraints are applied using the extended Kalman filter
update equations. These updates are applied to the filter states at a rate of IMUSampleRate/
DecimationFactor Hz.

gndFusion = insfilterNonholonomic('ReferenceFrame', 'ENU', ...
    'IMUSampleRate', imuFs, ...
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    'ReferenceLocation', localOrigin, ...
    'DecimationFactor', 2);

Create Ground Vehicle Trajectory

The waypointTrajectory object calculates pose based on specified sampling rate, waypoints, times
of arrival, and orientation. Specify the parameters of a circular trajectory for the ground vehicle.

% Trajectory parameters
r = 8.42; % (m)
speed = 2.50; % (m/s)
center = [0, 0]; % (m)
initialYaw = 90; % (degrees)
numRevs = 2;

% Define angles theta and corresponding times of arrival t.
revTime = 2*pi*r / speed;
theta = (0:pi/2:2*pi*numRevs).';
t = linspace(0, revTime*numRevs, numel(theta)).';

% Define position.
x = r .* cos(theta) + center(1);
y = r .* sin(theta) + center(2);
z = zeros(size(x));
position = [x, y, z];

% Define orientation.
yaw = theta + deg2rad(initialYaw);
yaw = mod(yaw, 2*pi);
pitch = zeros(size(yaw));
roll = zeros(size(yaw));
orientation = quaternion([yaw, pitch, roll], 'euler', ...
    'ZYX', 'frame');

% Generate trajectory.
groundTruth = waypointTrajectory('SampleRate', imuFs, ...
    'Waypoints', position, ...
    'TimeOfArrival', t, ...
    'Orientation', orientation);

% Initialize the random number generator used to simulate sensor noise.
rng('default');

GPS Receiver

Set up the GPS at the specified sample rate and reference location. The other parameters control the
nature of the noise in the output signal.

gps = gpsSensor('UpdateRate', gpsFs, 'ReferenceFrame', 'ENU');
gps.ReferenceLocation = localOrigin;
gps.DecayFactor = 0.5;                % Random walk noise parameter
gps.HorizontalPositionAccuracy = 1.0;
gps.VerticalPositionAccuracy =  1.0;
gps.VelocityAccuracy = 0.1;

IMU Sensors

Typically, ground vehicles use a 6-axis IMU sensor for pose estimation. To model an IMU sensor,
define an IMU sensor model containing an accelerometer and gyroscope. In a real-world application,
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the two sensors could come from a single integrated circuit or separate ones. The property values set
here are typical for low-cost MEMS sensors.

imu = imuSensor('accel-gyro', ...
    'ReferenceFrame', 'ENU', 'SampleRate', imuFs);

% Accelerometer
imu.Accelerometer.MeasurementRange =  19.6133;
imu.Accelerometer.Resolution = 0.0023928;
imu.Accelerometer.NoiseDensity = 0.0012356;

% Gyroscope
imu.Gyroscope.MeasurementRange = deg2rad(250);
imu.Gyroscope.Resolution = deg2rad(0.0625);
imu.Gyroscope.NoiseDensity = deg2rad(0.025);

Initialize the States of the insfilterNonholonomic

The states are:

States                            Units    Index
Orientation (quaternion parts)             1:4
Gyroscope Bias (XYZ)              rad/s    5:7
Position (NED)                    m        8:10
Velocity (NED)                    m/s      11:13
Accelerometer Bias (XYZ)          m/s^2    14:16

Ground truth is used to help initialize the filter states, so the filter converges to good answers quickly.

% Get the initial ground truth pose from the first sample of the trajectory
% and release the ground truth trajectory to ensure the first sample is not
% skipped during simulation.
[initialPos, initialAtt, initialVel] = groundTruth();
reset(groundTruth);

% Initialize the states of the filter
gndFusion.State(1:4) = compact(initialAtt).';
gndFusion.State(5:7) = imu.Gyroscope.ConstantBias;
gndFusion.State(8:10) = initialPos.';
gndFusion.State(11:13) = initialVel.';
gndFusion.State(14:16) = imu.Accelerometer.ConstantBias;

Initialize the Variances of the insfilterNonholonomic

The measurement noises describe how much noise is corrupting the GPS reading based on the
gpsSensor parameters and how much uncertainty is in the vehicle dynamic model.

The process noises describe how well the filter equations describe the state evolution. Process noises
are determined empirically using parameter sweeping to jointly optimize position and orientation
estimates from the filter.

% Measurement noises
Rvel = gps.VelocityAccuracy.^2;
Rpos = gps.HorizontalPositionAccuracy.^2;

% The dynamic model of the ground vehicle for this filter assumes there is
% no side slip or skid during movement. This means that the velocity is
% constrained to only the forward body axis. The other two velocity axis
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% readings are corrected with a zero measurement weighted by the
% |ZeroVelocityConstraintNoise| parameter.
gndFusion.ZeroVelocityConstraintNoise = 1e-2;

% Process noises
gndFusion.GyroscopeNoise = 4e-6;
gndFusion.GyroscopeBiasNoise = 4e-14;
gndFusion.AccelerometerNoise = 4.8e-2;
gndFusion.AccelerometerBiasNoise = 4e-14;

% Initial error covariance
gndFusion.StateCovariance = 1e-9*ones(16);

Initialize Scopes

The HelperScrollingPlotter scope enables plotting of variables over time. It is used here to
track errors in pose. The HelperPoseViewer scope allows 3-D visualization of the filter estimate
and ground truth pose. The scopes can slow the simulation. To disable a scope, set the corresponding
logical variable to false.

useErrScope = true; % Turn on the streaming error plot
usePoseView = true;  % Turn on the 3D pose viewer

if useErrScope
    errscope = HelperScrollingPlotter( ...
            'NumInputs', 4, ...
            'TimeSpan', 10, ...
            'SampleRate', imuFs, ...
            'YLabel', {'degrees', ...
            'meters', ...
            'meters', ...
            'meters'}, ...
            'Title', {'Quaternion Distance', ...
            'Position X Error', ...
            'Position Y Error', ...
            'Position Z Error'}, ...
            'YLimits', ...
            [-1, 1
             -1, 1
             -1, 1
             -1, 1]);
end

if usePoseView
    viewer = HelperPoseViewer( ...
        'XPositionLimits', [-15, 15], ...
        'YPositionLimits', [-15, 15], ...
        'ZPositionLimits', [-5, 5], ...
        'ReferenceFrame', 'ENU');
end

Simulation Loop

The main simulation loop is a while loop with a nested for loop. The while loop executes at the gpsFs,
which is the GPS measurement rate. The nested for loop executes at the imuFs, which is the IMU
sample rate. The scopes are updated at the IMU sample rate.
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totalSimTime = 30; % seconds

% Log data for final metric computation.
numsamples = floor(min(t(end), totalSimTime) * gpsFs);
truePosition = zeros(numsamples,3);
trueOrientation = quaternion.zeros(numsamples,1);
estPosition = zeros(numsamples,3);
estOrientation = quaternion.zeros(numsamples,1);

idx = 0;

for sampleIdx = 1:numsamples
    % Predict loop at IMU update frequency.
    for i = 1:imuSamplesPerGPS
        if ~isDone(groundTruth)
            idx = idx + 1;

            % Simulate the IMU data from the current pose.
            [truePosition(idx,:), trueOrientation(idx,:), ...
                trueVel, trueAcc, trueAngVel] = groundTruth();
            [accelData, gyroData] = imu(trueAcc, trueAngVel, ...
                trueOrientation(idx,:));

            % Use the predict method to estimate the filter state based
            % on the accelData and gyroData arrays.
            predict(gndFusion, accelData, gyroData);

            % Log the estimated orientation and position.
            [estPosition(idx,:), estOrientation(idx,:)] = pose(gndFusion);

            % Compute the errors and plot.
            if useErrScope
                orientErr = rad2deg( ...
                    dist(estOrientation(idx,:), trueOrientation(idx,:)));
                posErr = estPosition(idx,:) - truePosition(idx,:);
                errscope(orientErr, posErr(1), posErr(2), posErr(3));
            end

            % Update the pose viewer.
            if usePoseView
                viewer(estPosition(idx,:), estOrientation(idx,:), ...
                    truePosition(idx,:), estOrientation(idx,:));
            end
        end
    end

    if ~isDone(groundTruth)
        % This next step happens at the GPS sample rate.
        % Simulate the GPS output based on the current pose.
        [lla, gpsVel] = gps(truePosition(idx,:), trueVel);

        % Update the filter states based on the GPS data.
        fusegps(gndFusion, lla, Rpos, gpsVel, Rvel);
    end
end
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Error Metric Computation

Position and orientation were logged throughout the simulation. Now compute an end-to-end root
mean squared error for both position and orientation.

posd = estPosition - truePosition;

% For orientation, quaternion distance is a much better alternative to
% subtracting Euler angles, which have discontinuities. The quaternion
% distance can be computed with the |dist| function, which gives the
% angular difference in orientation in radians. Convert to degrees for
% display in the command window.

quatd = rad2deg(dist(estOrientation, trueOrientation));

% Display RMS errors in the command window.
fprintf('\n\nEnd-to-End Simulation Position RMS Error\n');
msep = sqrt(mean(posd.^2));
fprintf('\tX: %.2f , Y: %.2f, Z: %.2f   (meters)\n\n', msep(1), ...
    msep(2), msep(3));

fprintf('End-to-End Quaternion Distance RMS Error (degrees) \n');
fprintf('\t%.2f (degrees)\n\n', sqrt(mean(quatd.^2)));

End-to-End Simulation Position RMS Error
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    X: 1.16 , Y: 0.99, Z: 0.03   (meters)

End-to-End Quaternion Distance RMS Error (degrees) 
    0.09 (degrees)
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Pose Estimation From Asynchronous Sensors
This example shows how you might fuse sensors at different rates to estimate pose. Accelerometer,
gyroscope, magnetometer and GPS are used to determine orientation and position of a vehicle
moving along a circular path. You can use controls on the figure window to vary sensor rates and
experiment with sensor dropout while seeing the effect on the estimated pose.

Simulation Setup

Load prerecorded sensor data. The sensor data is based on a circular trajectory created using the
waypointTrajectory class. The sensor values were created using the gpsSensor and imuSensor
classes. The CircularTrajectorySensorData.mat file used here can be generated with the
generateCircularTrajSensorData function.

ld = load('CircularTrajectorySensorData.mat');

Fs = ld.Fs; % maximum MARG rate
gpsFs = ld.gpsFs; % maximum GPS rate
ratio = Fs./gpsFs;
refloc = ld.refloc;

trajOrient = ld.trajData.Orientation;
trajVel = ld.trajData.Velocity;
trajPos = ld.trajData.Position;
trajAcc = ld.trajData.Acceleration;
trajAngVel = ld.trajData.AngularVelocity;

accel = ld.accel;
gyro = ld.gyro;
mag = ld.mag;
lla = ld.lla;
gpsvel = ld.gpsvel;

Fusion Filter

Create an insfilterAsync to fuse IMU + GPS measurements. This fusion filter uses a continuous-
discrete extended Kalman filter (EKF) to track orientation (as a quaternion), angular velocity,
position, velocity, acceleration, sensor biases, and the geomagnetic vector.

This insfilterAsync has several methods to process sensor data: fuseaccel, fusegyro,
fusemag and fusegps. Because insfilterAsync uses a continuous-discrete EKF, the predict
method can step the filter forward an arbitrary amount of time.

fusionfilt = insfilterAsync('ReferenceLocation', refloc);

Initialize the State Vector of the insfilterAsync

The insfilterAsync tracks the pose states in a 28-element vector. The states are:

     States                          Units    Index
  Orientation (quaternion parts)             1:4
  Angular Velocity (XYZ)            rad/s    5:7
  Position (NED)                    m        8:10
  Velocity (NED)                    m/s      11:13
  Acceleration (NED)                m/s^2    14:16
  Accelerometer Bias (XYZ)          m/s^2    17:19
  Gyroscope Bias (XYZ)              rad/s    20:22
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  Geomagnetic Field Vector (NED)    uT       23:25
  Magnetometer Bias (XYZ)           uT       26:28

Ground truth is used to help initialize the filter states, so the filter converges to good answers quickly.

Nav = 100;
initstate = zeros(28,1);
initstate(1:4) = compact( meanrot(trajOrient(1:Nav)));
initstate(5:7) = mean( trajAngVel(10:Nav,:), 1);
initstate(8:10) = mean( trajPos(1:Nav,:), 1);
initstate(11:13) = mean( trajVel(1:Nav,:), 1);
initstate(14:16) = mean( trajAcc(1:Nav,:), 1);
initstate(23:25) = ld.magField;

% The gyroscope bias initial value estimate is low for the Z-axis. This is
% done to illustrate the effects of fusing the magnetometer in the
% simulation.
initstate(20:22) = deg2rad([3.125 3.125 3.125]);
fusionfilt.State = initstate;

Set the Process Noise Values of the insfilterAsync

The process noise variance describes the uncertainty of the motion model the filter uses.

fusionfilt.QuaternionNoise = 1e-2;
fusionfilt.AngularVelocityNoise = 100;
fusionfilt.AccelerationNoise = 100;
fusionfilt.MagnetometerBiasNoise = 1e-7;
fusionfilt.AccelerometerBiasNoise = 1e-7;
fusionfilt.GyroscopeBiasNoise = 1e-7;

Define the Measurement Noise Values Used to Fuse Sensor Data

Each sensor has some noise in the measurements. These values can typically be found on a sensor's
datasheet.

Rmag = 0.4;
Rvel = 0.01;
Racc = 610;
Rgyro = 0.76e-5;
Rpos = 3.4;

fusionfilt.StateCovariance = diag(1e-3*ones(28,1));

Initialize Scopes

The HelperScrollingPlotter scope enables plotting of variables over time. It is used here to
track errors in pose. The PoseViewerWithSwitches scope allows 3D visualization of the filter
estimate and ground truth pose. The scopes can slow the simulation. To disable a scope, set the
corresponding logical variable to false.

useErrScope = true; % Turn on the streaming error plot.
usePoseView = true; % Turn on the 3D pose viewer.
if usePoseView
    posescope = PoseViewerWithSwitches(...
        'XPositionLimits', [-30 30], ...
        'YPositionLimits', [-30, 30], ...
        'ZPositionLimits', [-10 10]);
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end
f = gcf;

if useErrScope
    errscope = HelperScrollingPlotter(...
        'NumInputs', 4, ...
        'TimeSpan', 10, ...
        'SampleRate', Fs, ...
        'YLabel', {'degrees', ...
        'meters', ...
        'meters', ...
        'meters'}, ...
        'Title', {'Quaternion Distance', ...
        'Position X Error', ...
        'Position Y Error', ...
        'Position Z Error'}, ...
        'YLimits', ...
        [ -1, 30
        -2, 2
        -2 2
        -2 2]);
end

Simulation Loop

The simulation of the fusion algorithm allows you to inspect the effects of varying sensor sample
rates. Further, fusion of individual sensors can be prevented by unchecking the corresponding
checkbox. This can be used to simulate sensor dropout.

Some configurations produce dramatic results. For example, turning off the GPS sensor causes the
position estimate to drift quickly. Turning off the magnetometer sensor will cause the orientation
estimate to slowly deviate from the ground truth as the estimate rotates too fast. Conversely, if the
gyroscope is turned off and the magnetometer is turned on, the estimated orientation shows a wobble
and lacks the smoothness present if both sensors are used.

Turning all sensors on but setting them to run at the lowest rate produces an estimate that visibly
deviates from the ground truth and then snaps back to a more correct result when sensors are fused.
This is most easily seen in the HelperScrollingPlotter of the running estimate errors.

The main simulation runs at 100 Hz. Each iteration inspects the checkboxes on the figure window
and, if the sensor is enabled, fuses the data for that sensor at the appropriate rate.

for ii=1:size(accel,1)
    fusionfilt.predict(1./Fs);

    % Fuse Accelerometer
    if (f.UserData.Accelerometer) && ...
        mod(ii, fix(Fs/f.UserData.AccelerometerSampleRate)) == 0

        fusionfilt.fuseaccel(accel(ii,:), Racc);
    end

    % Fuse Gyroscope
    if (f.UserData.Gyroscope) && ...
        mod(ii, fix(Fs/f.UserData.GyroscopeSampleRate)) == 0

        fusionfilt.fusegyro(gyro(ii,:), Rgyro);
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    end

    % Fuse Magnetometer
    if (f.UserData.Magnetometer) && ...
        mod(ii, fix(Fs/f.UserData.MagnetometerSampleRate)) == 0

        fusionfilt.fusemag(mag(ii,:), Rmag);
    end

    % Fuse GPS
    if (f.UserData.GPS) && mod(ii, fix(Fs/f.UserData.GPSSampleRate)) == 0
        fusionfilt.fusegps(lla(ii,:), Rpos, gpsvel(ii,:), Rvel);
    end

    % Plot the pose error
    [p,q] = pose(fusionfilt);
    posescope(p, q, trajPos(ii,:), trajOrient(ii));

    orientErr = rad2deg(dist(q, trajOrient(ii) ));
    posErr = p - trajPos(ii,:);
    errscope(orientErr, posErr(1), posErr(2), posErr(3));
end
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Conclusion

The insfilterAsync allows for various and varying sample rates. The quality of the estimated
outputs depends heavily on individual sensor fusion rates. Any sensor dropout will have a profound
effect on the output.
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Inertial Sensor Noise Analysis Using Allan Variance
This example shows how to use the Allan variance to determine noise parameters of a MEMS
gyroscope. These parameters can be used to model the gyroscope in simulation. The gyroscope
measurement is modeled as:

The three noise parameters N (angle random walk), K (rate random walk), and B (bias instability) are
estimated using data logged from a stationary gyroscope.

Background

Allan variance was originally developed by David W. Allan to measure the frequency stability of
precision oscillators. It can also be used to identify various noise sources present in stationary
gyroscope measurements. Consider L samples of data from a gyroscope with a sample time of .
Form data clusters of durations , , ...,  and obtain the averages of the sum
of the data points contained in each cluster over the length of the cluster. The Allan variance is
defined as the two-sample variance of the data cluster averages as a function of cluster time. This
example uses the overlapping Allan variance estimator. This means that the calculated clusters are
overlapping. The estimator performs better than non-overlapping estimators for larger values of L.

Allan Variance Calculation

The Allan variance is calculated as follows:

Log L stationary gyroscope samples with a sample period . Let  be the logged samples.

% Load logged data from one axis of a three-axis gyroscope. This recording
% was done over a six hour period with a 100 Hz sampling rate.
load('LoggedSingleAxisGyroscope', 'omega', 'Fs')
t0 = 1/Fs;

For each sample, calculate the output angle :

For discrete samples, the cumulative sum multiplied by  can be used.

theta = cumsum(omega, 1)*t0;

Next, calculate the Allan variance:

where  and  is the ensemble average.

The ensemble average can be expanded to:
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maxNumM = 100;
L = size(theta, 1);
maxM = 2.^floor(log2(L/2));
m = logspace(log10(1), log10(maxM), maxNumM).';
m = ceil(m); % m must be an integer.
m = unique(m); % Remove duplicates.

tau = m*t0;

avar = zeros(numel(m), 1);
for i = 1:numel(m)
    mi = m(i);
    avar(i,:) = sum( ...
        (theta(1+2*mi:L) - 2*theta(1+mi:L-mi) + theta(1:L-2*mi)).^2, 1);
end
avar = avar ./ (2*tau.^2 .* (L - 2*m));

Finally, the Allan deviation  is used to determine the gyroscope noise parameters.

adev = sqrt(avar);

figure
loglog(tau, adev)
title('Allan Deviation')
xlabel('\tau');
ylabel('\sigma(\tau)')
grid on
axis equal
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The Allan variance can also be calculated using the allanvar function.

[avarFromFunc, tauFromFunc] = allanvar(omega, m, Fs);
adevFromFunc = sqrt(avarFromFunc);

figure
loglog(tau, adev, tauFromFunc, adevFromFunc);
title('Allan Deviations')
xlabel('\tau')
ylabel('\sigma(\tau)')
legend('Manual Calculation', 'allanvar Function')
grid on
axis equal
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Noise Parameter Identification

To obtain the noise parameters for the gyroscope, use the following relationship between the Allan
variance and the two-sided power spectral density (PSD) of the noise parameters in the original data
set . The relationship is:

From the above equation, the Allan variance is proportional to the total noise power of the gyroscope
when passed through a filter with a transfer function of . This transfer function arises
from the operations done to create and operate on the clusters.

Using this transfer function interpretation, the filter bandpass depends on . This means that
different noise parameters can be identified by changing the filter bandpass, or varying .

Angle Random Walk

The angle random walk is characterized by the white noise spectrum of the gyroscope output. The
PSD is represented by:

where

N = angle random walk coefficient
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Substituting into the original PSD equation and performing integration yields:

The above equation is a line with a slope of -1/2 when plotted on a log-log plot of  versus . The
value of N can be read directly off of this line at .

% Find the index where the slope of the log-scaled Allan deviation is equal
% to the slope specified.
slope = -0.5;
logtau = log10(tau);
logadev = log10(adev);
dlogadev = diff(logadev) ./ diff(logtau);
[~, i] = min(abs(dlogadev - slope));

% Find the y-intercept of the line.
b = logadev(i) - slope*logtau(i);

% Determine the angle random walk coefficient from the line.
logN = slope*log(1) + b;
N = 10^logN

% Plot the results.
tauN = 1;
lineN = N ./ sqrt(tau);
figure
loglog(tau, adev, tau, lineN, '--', tauN, N, 'o')
title('Allan Deviation with Angle Random Walk')
xlabel('\tau')
ylabel('\sigma(\tau)')
legend('\sigma', '\sigma_N')
text(tauN, N, 'N')
grid on
axis equal

N =

    0.0126
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Rate Random Walk

The rate random walk is characterized by the red noise (Brownian noise) spectrum of the gyroscope
output. The PSD is represented by:

where

K = rate random walk coefficient

Substituting into the original PSD equation and performing integration yields:

The above equation is a line with a slope of 1/2 when plotted on a log-log plot of  versus . The
value of K can be read directly off of this line at .

% Find the index where the slope of the log-scaled Allan deviation is equal
% to the slope specified.
slope = 0.5;
logtau = log10(tau);
logadev = log10(adev);
dlogadev = diff(logadev) ./ diff(logtau);

 Inertial Sensor Noise Analysis Using Allan Variance

1-21



[~, i] = min(abs(dlogadev - slope));

% Find the y-intercept of the line.
b = logadev(i) - slope*logtau(i);

% Determine the rate random walk coefficient from the line.
logK = slope*log10(3) + b;
K = 10^logK

% Plot the results.
tauK = 3;
lineK = K .* sqrt(tau/3);
figure
loglog(tau, adev, tau, lineK, '--', tauK, K, 'o')
title('Allan Deviation with Rate Random Walk')
xlabel('\tau')
ylabel('\sigma(\tau)')
legend('\sigma', '\sigma_K')
text(tauK, K, 'K')
grid on
axis equal

K =

   9.0679e-05
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Bias Instability

The bias instability is characterized by the pink noise (flicker noise) spectrum of the gyroscope
output. The PSD is represented by:

where

B = bias instability coefficient

 = cut-off frequency

Substituting into the original PSD equation and performing integration yields:

where

Ci = cosine-integral function

When  is much longer than the inverse of the cutoff frequency, the PSD equation is:

The above equation is a line with a slope of 0 when plotted on a log-log plot of  versus . The

value of B can be read directly off of this line with a scaling of .

% Find the index where the slope of the log-scaled Allan deviation is equal
% to the slope specified.
slope = 0;
logtau = log10(tau);
logadev = log10(adev);
dlogadev = diff(logadev) ./ diff(logtau);
[~, i] = min(abs(dlogadev - slope));

% Find the y-intercept of the line.
b = logadev(i) - slope*logtau(i);

% Determine the bias instability coefficient from the line.
scfB = sqrt(2*log(2)/pi);
logB = b - log10(scfB);
B = 10^logB

% Plot the results.
tauB = tau(i);
lineB = B * scfB * ones(size(tau));
figure
loglog(tau, adev, tau, lineB, '--', tauB, scfB*B, 'o')
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title('Allan Deviation with Bias Instability')
xlabel('\tau')
ylabel('\sigma(\tau)')
legend('\sigma', '\sigma_B')
text(tauB, scfB*B, '0.664B')
grid on
axis equal

B =

    0.0020

Now that all the noise parameters have been calculated, plot the Allan deviation with all of the lines
used for quantifying the parameters.

tauParams = [tauN, tauK, tauB];
params = [N, K, scfB*B];
figure
loglog(tau, adev, tau, [lineN, lineK, lineB], '--', ...
    tauParams, params, 'o')
title('Allan Deviation with Noise Parameters')
xlabel('\tau')
ylabel('\sigma(\tau)')
legend('\sigma', '\sigma_N', '\sigma_K', '\sigma_B')
text(tauParams, params, {'N', 'K', '0.664B'})
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grid on
axis equal

Gyroscope Simulation

Use the imuSensor object to simulate gyroscope measurements with the noise parameters identified
above.

% Simulating the gyroscope measurements takes some time. To avoid this, the
% measurements were generated and saved to a MAT-file. By default, this
% example uses the MAT-file. To generate the measurements instead, change
% this logical variable to true.
generateSimulatedData = false;

if generateSimulatedData
    % Set the gyroscope parameters to the noise parameters determined
    % above.
    gyro = gyroparams('NoiseDensity', N, 'RandomWalk', K, ...
        'BiasInstability', B);
    omegaSim = helperAllanVarianceExample(L, Fs, gyro);
else
    load('SimulatedSingleAxisGyroscope', 'omegaSim')
end

Calculate the simulated Allan deviation and compare it to the logged data.

[avarSim, tauSim] = allanvar(omegaSim, 'octave', Fs);
adevSim = sqrt(avarSim);
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adevSim = mean(adevSim, 2); % Use the mean of the simulations.

figure
loglog(tau, adev, tauSim, adevSim, '--')
title('Allan Deviation of HW and Simulation')
xlabel('\tau');
ylabel('\sigma(\tau)')
legend('HW', 'SIM')
grid on
axis equal

The plot shows that the gyroscope model created from the imuSensor generates measurements with
similar Allan deviation to the logged data. The model measurements contain slightly less noise since
the quantization and temperature-related parameters are not set using gyroparams. The gyroscope
model can be used to generate measurements using movements that are not easily captured with
hardware.

References

• IEEE Std. 647-2006 IEEE Standard Specification Format Guide and Test Procedure for Single-Axis
Laser Gyros
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Estimate Orientation Through Inertial Sensor Fusion
This example shows how to use 6-axis and 9-axis fusion algorithms to compute orientation. There are
several algorithms to compute orientation from inertial measurement units (IMUs) and magnetic-
angular rate-gravity (MARG) units. This example covers the basics of orientation and how to use
these algorithms.

Orientation

An object's orientation describes its rotation relative to some coordinate system, sometimes called a
parent coordinate system, in three dimensions.

For the following algorithms, the fixed, parent coordinate system used is North-East-Down (NED).
NED is sometimes referred to as the global coordinate system or reference frame. In the NED
reference frame, the X-axis points north, the Y-axis points east, and the Z-axis points downward. The
X-Y plane of NED is considered to be the local tangent plane of the Earth. Depending on the
algorithm, north may be either magnetic north or true north. The algorithms in this example use
magnetic north.

If specified, the following algorithms can estimate orientation relative to East-North-Up (ENU) parent
coordinate system instead of NED.

An object can be thought of as having its own coordinate system, often called the local or child
coordinate system. This child coordinate system rotates with the object relative to the parent
coordinate system. If there is no translation, the origins of both coordinate systems overlap.

The orientation quantity computed is a rotation that takes quantities from the parent reference frame
to the child reference frame. The rotation is represented by a quaternion or rotation matrix.

Types of Sensors

For orientation estimation, three types of sensors are commonly used: accelerometers, gyroscopes
and magnetometers. Accelerometers measure proper acceleration. Gyroscopes measure angular
velocity. Magnetometers measure the local magnetic field. Different algorithms are used to fuse
different combinations of sensors to estimate orientation.

Sensor Data

Through most of this example, the same set of sensor data is used. Accelerometer, gyroscope, and
magnetometer sensor data was recorded while a device rotated around three different axes: first
around its local Y-axis, then around its Z-axis, and finally around its X-axis. The device's X-axis was
generally pointed southward for the duration of the experiment.

ld = load('rpy_9axis.mat');

acc = ld.sensorData.Acceleration;
gyro = ld.sensorData.AngularVelocity;
mag = ld.sensorData.MagneticField;

viewer = HelperOrientationViewer;

Accelerometer-Magnetometer Fusion

The ecompass function fuses accelerometer and magnetometer data. This is a memoryless algorithm
that requires no parameter tuning, but the algorithm is highly susceptible to sensor noise.
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qe = ecompass(acc, mag);
for ii=1:size(acc,1)
    viewer(qe(ii));
    pause(0.01);
end

Note that the ecompass algorithm correctly finds the location of north. However, because the
function is memoryless, the estimated motion is not smooth. The algorithm could be used as an
initialization step in an orientation filter or some of the techniques presented in the “Lowpass Filter
Orientation Using Quaternion SLERP” (Sensor Fusion and Tracking Toolbox) could be used to smooth
the motion.

Accelerometer-Gyroscope Fusion

The following objects estimate orientation using either an error-state Kalman filter or a
complementary filter. The error-state Kalman filter is the standard estimation filter and allows for
many different aspects of the system to be tuned using the corresponding noise parameters. The
complementary filter can be used as a substitute for systems with memory constraints, and has
minimal tunable parameters, which allows for easier configuration at the cost of finer tuning.

The imufilter and complementaryFilter System objects™ fuse accelerometer and gyroscope
data. The imufilter uses an internal error-state Kalman filter and the complementaryFilter
uses a complementary filter. The filters are capable of removing the gyroscope's bias noise, which
drifts over time.

ifilt = imufilter('SampleRate', ld.Fs);
for ii=1:size(acc,1)
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    qimu = ifilt(acc(ii,:), gyro(ii,:));
    viewer(qimu);
    pause(0.01);
end

% Disable magnetometer input.
cfilt = complementaryFilter('SampleRate', ld.Fs, 'HasMagnetometer', false);
for ii=1:size(acc,1)
    qimu = cfilt(acc(ii,:), gyro(ii,:));
    viewer(qimu);
    pause(0.01);
end
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Although the imufilter and complementaryFilter algorithms produce significantly smoother
estimates of the motion, compared to the ecompass, they do not correctly estimate the direction of
north. The imufilter does not process magnetometer data, so it simply assumes the device's X-axis
is initially pointing northward. The motion estimate given by imufilter is relative to the initial
estimated orientation. The complementaryFilter makes the same assumption when the
HasMagnetometer property is set to false.

Accelerometer-Gyroscope-Magnetometer Fusion

An attitude and heading reference system (AHRS) consists of a 9-axis system that uses an
accelerometer, gyroscope, and magnetometer to compute orientation. The ahrsfilter and
complementaryFilter System objects™ combine the best of the previous algorithms to produce a
smoothly changing estimate of the device orientation, while correctly estimating the direction of
north. The complementaryFilter uses the same complementary filter algorithm as before, with an
extra step to include the magnetometer and improve the orientation estimate. Like imufilter,
ahrsfilter algorithm also uses an error-state Kalman filter. In addition to gyroscope bias removal,
the ahrsfilter has some ability to detect and reject mild magnetic jamming.

ifilt = ahrsfilter('SampleRate', ld.Fs);
for ii=1:size(acc,1)
    qahrs = ifilt(acc(ii,:), gyro(ii,:), mag(ii,:));
    viewer(qahrs);
    pause(0.01);
end
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cfilt = complementaryFilter('SampleRate', ld.Fs);
for ii=1:size(acc,1)
    qahrs = cfilt(acc(ii,:), gyro(ii,:), mag(ii,:));
    viewer(qahrs);
    pause(0.01);
end
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Tuning Filter Parameters

The complementaryFilter, imufilter, and ahrsfilter System objects™ all have tunable
parameters. Tuning the parameters based on the specified sensors being used can improve
performance.

The complementaryFilter parameters AccelerometerGain and MagnetometerGain can be
tuned to change the amount each sensor's measurements impact the orientation estimate. When
AccelerometerGain is set to 0, only the gyroscope is used for the x- and y-axis orientation. When
AccelerometerGain is set to 1, only the accelerometer is used for the x- and y-axis orientation.
When MagnetometerGain is set to 0, only the gyroscope is used for the z-axis orientation. When
MagnetometerGain is set to 1, only the magnetometer is used for the z-axis orientation.

The ahrsfilter and imufilter System objects™ have more parameters that can allow the filters
to more closely match specific hardware sensors. The environment of the sensor is also important to
take into account. The imufilter parameters are a subset of the ahrsfilter parameters. The
AccelerometerNoise, GyroscopeNoise, MagnetometerNoise, and GyroscopeDriftNoise are
measurement noises. The sensors' datasheets help determine those values.

The LinearAccelerationNoise and LinearAccelerationDecayFactor govern the filter's
response to linear (translational) acceleration. Shaking a device is a simple example of adding linear
acceleration.

Consider how an imufilter with a LinearAccelerationNoise of 9e-3  responds to a
shaking trajectory, compared to one with a LinearAccelerationNoise of 9e-4 .
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ld = load('shakingDevice.mat');
accel = ld.sensorData.Acceleration;
gyro = ld.sensorData.AngularVelocity;
viewer = HelperOrientationViewer;

highVarFilt = imufilter('SampleRate', ld.Fs, ...
    'LinearAccelerationNoise', 0.009);
qHighLANoise = highVarFilt(accel, gyro);

lowVarFilt = imufilter('SampleRate', ld.Fs, ...
    'LinearAccelerationNoise', 0.0009);
qLowLANoise = lowVarFilt(accel, gyro);

One way to see the effect of the LinearAccelerationNoise is to look at the output gravity vector.
The gravity vector is simply the third column of the orientation rotation matrix.

rmatHigh = rotmat(qHighLANoise, 'frame');
rmatLow = rotmat(qLowLANoise, 'frame');

gravDistHigh = sqrt(sum( (rmatHigh(:,3,:) - [0;0;1]).^2, 1));
gravDistLow = sqrt(sum( (rmatLow(:,3,:) - [0;0;1]).^2, 1));

figure;
plot([squeeze(gravDistHigh), squeeze(gravDistLow)]);
title('Euclidean Distance to Gravity');
legend('LinearAccelerationNoise = 0.009', ...
    'LinearAccelerationNoise = 0.0009');
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The lowVarFilt has a low LinearAccelerationNoise, so it expects to be in an environment with
low linear acceleration. Therefore, it is more susceptible to linear acceleration, as illustrated by the
large variations earlier in the plot. However, because it expects to be in an environment with a low
linear acceleration, higher trust is placed in the accelerometer signal. As such, the orientation
estimate converges quickly back to vertical once the shaking has ended. The converse is true for
highVarFilt. The filter is less affected by shaking, but the orientation estimate takes longer to
converge to vertical when the shaking has stopped.

The MagneticDisturbanceNoise property enables modeling magnetic disturbances (non-
geomagnetic noise sources) in much the same way LinearAccelerationNoise models linear
acceleration.

The two decay factor properties (MagneticDisturbanceDecayFactor and
LinearAccelerationDecayFactor) model the rate of variation of the noises. For slowly varying
noise sources, set these parameters to a value closer to 1. For quickly varying, uncorrelated noises,
set these parameters closer to 0. A lower LinearAccelerationDecayFactor enables the
orientation estimate to find "down" more quickly. A lower MagneticDisturbanceDecayFactor
enables the orientation estimate to find north more quickly.

Very large, short magnetic disturbances are rejected almost entirely by the ahrsfilter. Consider a
pulse of [0 250 0] uT applied while recording from a stationary sensor. Ideally, there should be no
change in orientation estimate.

ld = load('magJamming.mat');
hpulse = ahrsfilter('SampleRate', ld.Fs);
len = 1:10000;
qpulse = hpulse(ld.sensorData.Acceleration(len,:), ...
    ld.sensorData.AngularVelocity(len,:), ...
    ld.sensorData.MagneticField(len,:));

figure;
timevec = 0:ld.Fs:(ld.Fs*numel(qpulse) - 1);
plot( timevec, eulerd(qpulse, 'ZYX', 'frame') );
title(['Stationary Trajectory Orientation Euler Angles' newline ...
    'Magnetic Jamming Response']);
legend('Z-rotation', 'Y-rotation', 'X-rotation');
ylabel('Degrees');
xlabel('Seconds');
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Note that the filter almost totally rejects this magnetic pulse as interference. Any magnetic field
strength greater than four times the ExpectedMagneticFieldStrength is considered a jamming
source and the magnetometer signal is ignored for those samples.

Conclusion

The algorithms presented here, when properly tuned, enable estimation of orientation and are robust
against environmental noise sources. It is important to consider the situations in which the sensors
are used and tune the filters accordingly.
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IMU and GPS Fusion for Inertial Navigation
This example shows how you might build an IMU + GPS fusion algorithm suitable for unmanned
aerial vehicles (UAVs) or quadcopters.

This example uses accelerometers, gyroscopes, magnetometers, and GPS to determine orientation
and position of a UAV.

Simulation Setup

Set the sampling rates. In a typical system, the accelerometer and gyroscope run at relatively high
sample rates. The complexity of processing data from those sensors in the fusion algorithm is
relatively low. Conversely, the GPS, and in some cases the magnetometer, run at relatively low sample
rates, and the complexity associated with processing them is high. In this fusion algorithm, the
magnetometer and GPS samples are processed together at the same low rate, and the accelerometer
and gyroscope samples are processed together at the same high rate.

To simulate this configuration, the IMU (accelerometer, gyroscope, and magnetometer) are sampled
at 160 Hz, and the GPS is sampled at 1 Hz. Only one out of every 160 samples of the magnetometer is
given to the fusion algorithm, so in a real system the magnetometer could be sampled at a much
lower rate.

imuFs = 160;
gpsFs = 1;

% Define where on the Earth this simulated scenario takes place using the
% latitude, longitude and altitude.
refloc = [42.2825 -72.3430 53.0352];

% Validate that the |gpsFs| divides |imuFs|. This allows the sensor sample 
% rates to be simulated using a nested for loop without complex sample rate
% matching.

imuSamplesPerGPS = (imuFs/gpsFs);
assert(imuSamplesPerGPS == fix(imuSamplesPerGPS), ...
    'GPS sampling rate must be an integer factor of IMU sampling rate.');

Fusion Filter

Create the filter to fuse IMU + GPS measurements. The fusion filter uses an extended Kalman filter to
track orientation (as a quaternion), velocity, position, sensor biases, and the geomagnetic vector.

This insfilterMARG has a few methods to process sensor data, including predict, fusemag and
fusegps. The predict method takes the accelerometer and gyroscope samples from the IMU as
inputs. Call the predict method each time the accelerometer and gyroscope are sampled. This
method predicts the states one time step ahead based on the accelerometer and gyroscope. The error
covariance of the extended Kalman filter is updated here.

The fusegps method takes GPS samples as input. This method updates the filter states based on
GPS samples by computing a Kalman gain that weights the various sensor inputs according to their
uncertainty. An error covariance is also updated here, this time using the Kalman gain as well.

The fusemag method is similar but updates the states, Kalman gain, and error covariance based on
the magnetometer samples.
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Though the insfilterMARG takes accelerometer and gyroscope samples as inputs, these are
integrated to compute delta velocities and delta angles, respectively. The filter tracks the bias of the
magnetometer and these integrated signals.

fusionfilt = insfilterMARG;
fusionfilt.IMUSampleRate = imuFs;
fusionfilt.ReferenceLocation = refloc;

UAV Trajectory

This example uses a saved trajectory recorded from a UAV as the ground truth. This trajectory is fed
to several sensor simulators to compute simulated accelerometer, gyroscope, magnetometer, and GPS
data streams.

% Load the "ground truth" UAV trajectory.
load LoggedQuadcopter.mat trajData;
trajOrient = trajData.Orientation;
trajVel = trajData.Velocity;
trajPos = trajData.Position;
trajAcc = trajData.Acceleration;
trajAngVel = trajData.AngularVelocity;

% Initialize the random number generator used in the simulation of sensor
% noise.
rng(1)

GPS Sensor

Set up the GPS at the specified sample rate and reference location. The other parameters control the
nature of the noise in the output signal.

gps = gpsSensor('UpdateRate', gpsFs);
gps.ReferenceLocation = refloc;     
gps.DecayFactor = 0.5;              % Random walk noise parameter 
gps.HorizontalPositionAccuracy = 1.6;   
gps.VerticalPositionAccuracy =  1.6;
gps.VelocityAccuracy = 0.1;

IMU Sensors

Typically, a UAV uses an integrated MARG sensor (Magnetic, Angular Rate, Gravity) for pose
estimation. To model a MARG sensor, define an IMU sensor model containing an accelerometer,
gyroscope, and magnetometer. In a real-world application the three sensors could come from a single
integrated circuit or separate ones. The property values set here are typical for low-cost MEMS
sensors.

imu = imuSensor('accel-gyro-mag', 'SampleRate', imuFs);
imu.MagneticField = [19.5281 -5.0741 48.0067];

% Accelerometer
imu.Accelerometer.MeasurementRange =  19.6133;
imu.Accelerometer.Resolution = 0.0023928;
imu.Accelerometer.ConstantBias = 0.19;
imu.Accelerometer.NoiseDensity = 0.0012356;

% Gyroscope
imu.Gyroscope.MeasurementRange = deg2rad(250);
imu.Gyroscope.Resolution = deg2rad(0.0625);
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imu.Gyroscope.ConstantBias = deg2rad(3.125);
imu.Gyroscope.AxesMisalignment = 1.5;
imu.Gyroscope.NoiseDensity = deg2rad(0.025);

% Magnetometer
imu.Magnetometer.MeasurementRange = 1000;
imu.Magnetometer.Resolution = 0.1;
imu.Magnetometer.ConstantBias = 100;
imu.Magnetometer.NoiseDensity = 0.3/ sqrt(50);

Initialize the State Vector of the insfilterMARG

The insfilterMARG tracks the pose states in a 22-element vector. The states are:

     State                           Units        State Vector Index
 Orientation as a quaternion                      1:4
 Position (NED)                      m            5:7
 Velocity (NED)                      m/s          8:10 
 Delta Angle Bias (XYZ)              rad          11:13
 Delta Velocity Bias (XYZ)           m/s          14:16
 Geomagnetic Field Vector (NED)      uT           17:19
 Magnetometer Bias (XYZ)             uT           20:22

Ground truth is used to help initialize the filter states, so the filter converges to good answers quickly.

% Initialize the states of the filter 

initstate = zeros(22,1);
initstate(1:4) = compact( meanrot(trajOrient(1:100))); 
initstate(5:7) = mean( trajPos(1:100,:), 1);
initstate(8:10) = mean( trajVel(1:100,:), 1);
initstate(11:13) =  imu.Gyroscope.ConstantBias./imuFs;
initstate(14:16) =  imu.Accelerometer.ConstantBias./imuFs;
initstate(17:19) =  imu.MagneticField;
initstate(20:22) = imu.Magnetometer.ConstantBias;

fusionfilt.State = initstate;

Initialize the Variances of the insfilterMARG

The insfilterMARG measurement noises describe how much noise is corrupting the sensor reading.
These values are based on the imuSensor and gpsSensor parameters.

The process noises describe how well the filter equations describe the state evolution. Process noises
are determined empirically using parameter sweeping to jointly optimize position and orientation
estimates from the filter.

% Measurement noises
Rmag = 0.09; % Magnetometer measurement noise
Rvel = 0.01; % GPS Velocity measurement noise
Rpos = 2.56; % GPS Position measurement noise

% Process noises
fusionfilt.AccelerometerBiasNoise =  2e-4;
fusionfilt.AccelerometerNoise = 2; 
fusionfilt.GyroscopeBiasNoise = 1e-16;
fusionfilt.GyroscopeNoise =  1e-5;
fusionfilt.MagnetometerBiasNoise = 1e-10;
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fusionfilt.GeomagneticVectorNoise = 1e-12;

% Initial error covariance
fusionfilt.StateCovariance = 1e-9*ones(22);

Initialize Scopes

The HelperScrollingPlotter scope enables plotting of variables over time. It is used here to
track errors in pose. The HelperPoseViewer scope allows 3-D visualization of the filter estimate
and ground truth pose. The scopes can slow the simulation. To disable a scope, set the corresponding
logical variable to false.

useErrScope = true;  % Turn on the streaming error plot
usePoseView = true;  % Turn on the 3-D pose viewer

if useErrScope
    errscope = HelperScrollingPlotter(...
        'NumInputs', 4, ...
        'TimeSpan', 10, ...
        'SampleRate', imuFs, ...
        'YLabel', {'degrees', ...
        'meters', ...
        'meters', ...
        'meters'}, ...
        'Title', {'Quaternion Distance', ...
        'Position X Error', ...
        'Position Y Error', ...
        'Position Z Error'}, ...
        'YLimits', ...
        [ -1, 1
        -2, 2
        -2 2
        -2 2]);
end

if usePoseView
    posescope = HelperPoseViewer(...
        'XPositionLimits', [-15 15], ...
        'YPositionLimits', [-15, 15], ...
        'ZPositionLimits', [-10 10]);
end

Simulation Loop

The main simulation loop is a while loop with a nested for loop. The while loop executes at gpsFs,
which is the GPS sample rate. The nested for loop executes at imuFs, which is the IMU sample rate.
The scopes are updated at the IMU sample rate.

% Loop setup - |trajData| has about 142 seconds of recorded data.
secondsToSimulate = 50; % simulate about 50 seconds
numsamples = secondsToSimulate*imuFs;

loopBound = floor(numsamples);
loopBound = floor(loopBound/imuFs)*imuFs; % ensure enough IMU Samples

% Log data for final metric computation.
pqorient = quaternion.zeros(loopBound,1);
pqpos = zeros(loopBound,3);
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fcnt = 1;

while(fcnt <=loopBound)
    % |predict| loop at IMU update frequency.
    for ff=1:imuSamplesPerGPS
        % Simulate the IMU data from the current pose.
        [accel, gyro, mag] = imu(trajAcc(fcnt,:), trajAngVel(fcnt, :), ...
            trajOrient(fcnt));
        
        % Use the |predict| method to estimate the filter state based
        % on the simulated accelerometer and gyroscope signals.
        predict(fusionfilt, accel, gyro);
        
        % Acquire the current estimate of the filter states.
        [fusedPos, fusedOrient] = pose(fusionfilt);
        
        % Save the position and orientation for post processing.
        pqorient(fcnt) = fusedOrient;
        pqpos(fcnt,:) = fusedPos;
        
        % Compute the errors and plot.
        if useErrScope
            orientErr = rad2deg(dist(fusedOrient, ...
                trajOrient(fcnt) ));
            posErr = fusedPos - trajPos(fcnt,:); 
            errscope(orientErr, posErr(1), posErr(2), posErr(3));
        end
        
        % Update the pose viewer.
        if usePoseView
            posescope(pqpos(fcnt,:), pqorient(fcnt),  trajPos(fcnt,:), ...
                trajOrient(fcnt,:) );
        end
        fcnt = fcnt + 1;
    end
    
    % This next step happens at the GPS sample rate.
    % Simulate the GPS output based on the current pose.
    [lla, gpsvel] = gps( trajPos(fcnt,:), trajVel(fcnt,:) );
    
    % Correct the filter states based on the GPS data and magnetic
    % field measurements.
    fusegps(fusionfilt, lla, Rpos, gpsvel, Rvel);
    fusemag(fusionfilt, mag, Rmag);
 
end
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Error Metric Computation

Position and orientation estimates were logged throughout the simulation. Now compute an end-to-
end root mean squared error for both position and orientation.

posd = pqpos(1:loopBound,:) - trajPos( 1:loopBound, :);

% For orientation, quaternion distance is a much better alternative to
% subtracting Euler angles, which have discontinuities. The quaternion
% distance can be computed with the |dist| function, which gives the
% angular difference in orientation in radians. Convert to degrees
% for display in the command window. 

quatd = rad2deg(dist(pqorient(1:loopBound), trajOrient(1:loopBound)) );

% Display RMS errors in the command window.
fprintf('\n\nEnd-to-End Simulation Position RMS Error\n');

End-to-End Simulation Position RMS Error

msep = sqrt(mean(posd.^2));
fprintf('\tX: %.2f , Y: %.2f, Z: %.2f   (meters)\n\n',msep(1), ...
    msep(2), msep(3));

    X: 0.57 , Y: 0.53, Z: 0.68   (meters)

fprintf('End-to-End Quaternion Distance RMS Error (degrees) \n');
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End-to-End Quaternion Distance RMS Error (degrees) 

fprintf('\t%.2f (degrees)\n\n', sqrt(mean(quatd.^2)));

    0.32 (degrees)
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GNSS Simulation Overview
Global Navigation Satellite System (GNSS) simulation generates receiver position estimates.
Generate GNSS receiver position estimates using GPS and GNSS sensor models as gpsSensor and
gnssSensor objects. Monitor the status of the position estimate in the gnssSensor using the
dilution of precision outputs and compare the number of satellites available.

Simulation Parameters

Specify the parameters to be used in the GNSS simulation:

• Sampling rate of the GNSS receiver
• Local navigation reference frame
• Location on Earth in latitude, longitude, and altitude (LLA) coordinates
• Number of samples to simulate

Fs = 1;
refFrame = "NED";
lla0 = [42.2825 -71.343 53.0352];
N = 100;

Create a trajectory for a stationary sensor.

pos = zeros(N, 3);
vel = zeros(N, 3);
time = (0:N-1) ./ Fs;

Sensor Model Creation

Create the GNSS simulation objects, gpsSensor and gnssSensor using the same initial parameters
for each.

gps = gpsSensor("SampleRate", Fs, "ReferenceLocation", lla0, ...
    "ReferenceFrame", refFrame);

gnss = gnssSensor("SampleRate", Fs, "ReferenceLocation", lla0, ...
    "ReferenceFrame", refFrame);

Simulation using gpsSensor

Generate outputs from a stationary receiver using the GPS sensor. Visualize the position in LLA
coordinates and the velocity in each direction.

% Generate outputs.
[llaGPS, velGPS] = gps(pos, vel);

% Visualize positon.
figure
subplot(3, 1, 1)
plot(time, llaGPS(:,1))
title('Latitude')
ylabel('degrees')
xlabel('s')
subplot(3, 1, 2)
plot(time, llaGPS(:,2))
title('Longitude')
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ylabel('degrees')
xlabel('s')
subplot(3, 1, 3)
plot(time, llaGPS(:,3))
title('Altitude')
ylabel('m')
xlabel('s')

% Visualize velocity.
figure
plot(time, velGPS)
title('Velocity')
legend('X', 'Y', 'Z')
ylabel('m/s')
xlabel('s')
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Simulation using gnssSensor

Generate outputs from a stationary receiver using the GNSS sensor. Visualize the position and
velocity and notice the differences in the simulation.

% Generate outputs.
[llaGNSS, velGNSS] = gnss(pos, vel);

% Visualize positon.
figure
subplot(3, 1, 1)
plot(time, llaGNSS(:,1))
title('Latitude')
ylabel('degrees')
xlabel('s')
subplot(3, 1, 2)
plot(time, llaGNSS(:,2))
title('Longitude')
ylabel('degrees')
xlabel('s')
subplot(3, 1, 3)
plot(time, llaGNSS(:,3))
title('Altitude')
ylabel('m')
xlabel('s')
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% Visualize velocity.
figure
plot(time, velGNSS)
title('Velocity')
legend('X', 'Y', 'Z')
ylabel('m/s')
xlabel('s')
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Dilution of Precision

The gnssSensor object has a higher fidelity simulation compared to gpsSensor. For example, the
gnssSensor object uses simulated satellite positions to estimate the receiver position. This means
that the horizontal dilution of precision (HDOP) and vertical dilution of precision (VDOP) can be
reported along with the position estimate. These values indicate how precise the position estimate is
based on the satellite geometry. Smaller values indicate a more precise estimate.

% Set the RNG seed to reproduce results. 
rng('default')

% Specify the start time of the simulation.
initTime = datetime(2020, 4, 20, 18, 10, 0, "TimeZone", "America/New_York");

% Create the GNSS receiver model.
gnss = gnssSensor("SampleRate", Fs, "ReferenceLocation", lla0, ...
    "ReferenceFrame", refFrame, "InitialTime", initTime);

% Obtain the receiver status. 
[~, ~, status] = gnss(pos, vel);
disp(status(1))

      SatelliteAzimuth: [7x1 double]
    SatelliteElevation: [7x1 double]
                  HDOP: 1.1290
                  VDOP: 1.9035
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View the HDOP throughout the simulation. There is a decrease in the HDOP. This means that the
satellite geometry changed.

hdops = vertcat(status.HDOP);

figure
plot(time, vertcat(status.HDOP))
title('HDOP')
ylabel('m')
xlabel('s')

Verify that the satellite geometry has changed. Find the index where the HDOP decreased and see if
that corresponds to a change in the number of satellites in view. The numSats variable increases
from 7 to 8.

% Find expected sample index for a change in the
% number of satellites in view.
[~, satChangeIdx] = max(abs(diff(hdops)));

% Visualize the satellite geometry before the
% change in HDOP.
satAz = status(satChangeIdx).SatelliteAzimuth;
satEl = status(satChangeIdx).SatelliteElevation;
numSats = numel(satAz);
exampleHelper_skyplot(satAz, satEl);
title(sprintf('Satellites in View: %d\nHDOP: %.4f', ...
    numSats, hdops(satChangeIdx)))

 GNSS Simulation Overview

1-49



% Visualize the satellite geometry after the
% change in HDOP.
satAz = status(satChangeIdx+1).SatelliteAzimuth;
satEl = status(satChangeIdx+1).SatelliteElevation;
numSats = numel(satAz);
exampleHelper_skyplot(satAz, satEl);
title(sprintf('Satellites in View: %d\nHDOP: %.4f', ...
    numSats, hdops(satChangeIdx+1)))
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The HDOP and VDOP values can be used as diagonal elements in measurement covariance matrices
when combining GNSS receiver position estimates with other sensor measurements using a Kalman
filter.

% Convert HDOP and VDOP to a measurement covariance matrix.
hdop = status(1).HDOP;
vdop = status(1).VDOP;
measCov = diag([hdop.^2/2, hdop.^2/2, vdop.^2]);
disp(measCov)

    0.6373         0         0
         0    0.6373         0
         0         0    3.6233
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IMU Sensor Fusion with Simulink
This example shows how to generate and fuse IMU sensor data using Simulink®. You can accurately
model the behavior of an accelerometer, a gyroscope, and a magnetometer and fuse their outputs to
compute orientation.

Inertial Measurement Unit

An inertial measurement unit (IMU) is a group of sensors consisting of an accelerometer measuring
acceleration and a gyroscope measuring angular velocity. Frequently, a magnetometer is also
included to measure the Earth's magnetic field. Each of these three sensors produces a 3-axis
measurement, and these three measurements constitute a 9-axis measurement.

Attitude Heading and Reference System

An Attitude Heading and Reference System (AHRS) takes the 9-axis sensor readings and computes
the orientation of the device. This orientation is given relative to the NED frame, where N is the
Magnetic North direction. The AHRS block in Simulink accomplishes this using an indirect Kalman
filter structure.

Simulink System

Open the Simulink model that fuses IMU sensor data

open_system('IMUFusionSimulinkModel');

Inputs and Configuration

The inputs to the IMU block are the device's linear acceleration, angular velocity, and the orientation
relative to the navigation frame. The orientation is of the form of a quaternion (a 4-by-1 vector in
Simulink) or rotation matrix (a 3-by-3 matrix in Simulink) that rotates quantities in the navigation
frame to the body frame. In this model, the angular velocity is simply integrated to create an
orientation input. The angular velocity is in rad/s and the linear acceleration is in m/s^2. Because the
AHRS has only one input related to translation (the accelerometer input), it cannot distinguish
between gravity and linear acceleration. Therefore, the AHRS algorithm assumes that linear
acceleration is a slowly varying white noise process. This is a common assumption for 9-axis fusion
algorithms.
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True North vs Magnetic North

Magnetic field parameter on the IMU block dialog can be set to the local magnetic field value.
Magnetic field values can be found on the NOAA website or using the wrldmagm function in the
Aerospace Toolbox™. The magnetic field values on the IMU block dialog correspond the readings of a
perfect magnetometer that is orientated to True North. Therefore, the orientation input to the IMU
block is relative to the NED frame, where N is the True North direction. However, the AHRS filter
navigates towards Magnetic North, which is typical for this type of filter. Therefore, the orientation
input to the IMU and the estimated orientation at the output of the AHRS differ by the declination
angle between True North and Magnetic North.

This simulation is setup for  latitude and  longitude. The magnetic field at this location is set as
[27.5550, -2.4169, -16.0849] microtesla in the IMU block. The declination at this location is about

Simulation

Simulate the model. The IMU input orientation and the estimated output orientation of the AHRS are
compared using quaternion distance. This is preferable compared to differencing the Euler angle
equivalents, considering the Euler angle singularities.

sim('IMUFusionSimulinkModel');

Estimated Orientation

The difference in estimated vs true orientation should be nearly , which is the declination at this
latitude and longitude.

Gyroscope Bias

The second output of the AHRS filter is the bias-corrected gyroscope reading. In the IMU block, the
gyroscope was given a bias of 0.0545 rad/s or 3.125 deg/s, which should match the steady state value
in the Gyroscope Bias scope block.

Further Exercises

By varying the parameters on the IMU, you should see a corresponding change in orientation on the
output of the AHRS. You can set the parameters on the IMU block to match a real IMU datasheet and
tune the AHRS parameters to meet your requirements.
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Automatic Tuning of the insfilterAsync Filter
The insfilterAsync object is a complex extended Kalman filter that estimates the device pose.
However, manually tuning the filter or finding the optimal values for the noise parameters can be a
challenging task. This example illustrates how to use the tune function to optimize the filter noise
parameters.

Trajectory and Sensor Setup

To illustrate the tuning process of the insfilterAsync filter, use a simple random waypoint
trajectory. The imuSensor and gpsSensor objects create inputs for the filter.

% The IMU runs at 100 Hz and the GPS runs at 1 Hz.
imurate = 100;
gpsrate = 1;
decim = imurate/gpsrate;

% Create a random waypoint trajectory.
rng(1)
Npts = 4; % number of waypoints
wpPer = 5; % time between waypoints
tstart = 0;
tend = wpPer*(Npts -1);
wp = waypointTrajectory('Waypoints',5*rand(Npts,3), ...
        'TimeOfArrival',tstart:wpPer:tend, ...
        'Orientation',[quaternion.ones; randrot(Npts-1,1)], ...
        'SampleRate', imurate);

[Position,Orientation,Velocity,Acceleration,AngularVelocity] = lookupPose(...
    wp, tstart:(1/imurate):tend);

% Set up an IMU and process the trajectory.
imu = imuSensor('SampleRate',imurate);
loadparams(imu,fullfile(matlabroot, ...
    "toolbox\shared\positioning\positioningdata\generic.json"), ...
    "GenericLowCost9Axis");
[Accelerometer, Gyroscope, Magnetometer] = imu(Acceleration, ...
    AngularVelocity, Orientation);
imuData = timetable(Accelerometer,Gyroscope,Magnetometer,'SampleRate',imurate);

% Set up a GPS sensor and process the trajectory.
gps = gpsSensor('SampleRate', gpsrate,'DecayFactor',0.5, ...
    'HorizontalPositionAccuracy',1.6,'VerticalPositionAccuracy',1.6, ...
    'VelocityAccuracy',0.1);
[GPSPosition,GPSVelocity] = gps(Position(1:decim:end,:), Velocity(1:decim:end,:));
gpsData = timetable(GPSPosition,GPSVelocity,'SampleRate',gpsrate);

% Create a timetable for the tune function.
sensorData = synchronize(imuData,gpsData);

% Create a timetable capturing the ground truth pose.
groundTruth = timetable(Position,Orientation,'SampleRate',imurate);

Construct the Filter

The insfilterAsync filter fuses data from multiple sensors operating asynchronously

filtUntuned = insfilterAsync;
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Determine Filter Initial Conditions

Set the initial values for the State and StateCovariance properties based on the ground truth.
Normally to obtain the initial values, you would use the first several samples of sensorData along
with calibration routines. However, in this example the groundTruth is used to set the initial state
for fast convergence of the filter.

idx = stateinfo(filtUntuned);
filtUntuned.State(idx.Orientation) = compact(Orientation(1));
filtUntuned.State(idx.AngularVelocity) = AngularVelocity(1,:);
filtUntuned.State(idx.Position) = Position(1,:);
filtUntuned.State(idx.Velocity) = Velocity(1,:);
filtUntuned.State(idx.Acceleration) = Acceleration(1,:);
filtUntuned.State(idx.AccelerometerBias) = imu.Accelerometer.ConstantBias;
filtUntuned.State(idx.GyroscopeBias) = imu.Gyroscope.ConstantBias;
filtUntuned.State(idx.GeomagneticFieldVector) = imu.MagneticField;
filtUntuned.State(idx.MagnetometerBias) = imu.Magnetometer.ConstantBias;
filtUntuned.StateCovariance = 1e-5*eye(numel(filtUntuned.State));

% Create a copy of the filtUntuned object for tuning later.
filtTuned = copy(filtUntuned);

Process sensorData with an Untuned Filter

Use the tunernoise function to create measurement noises which also need to be tuned. To
illustrate the necessity for tuning, first use the filter with its default parameters.

mn = tunernoise('insfilterAsync');
[posUntunedEst, orientUntunedEst] = fuse(filtUntuned, sensorData, mn);

Tune the Filter and Process sensorData

Use the tune function to minimize the root mean squared (RMS) error between the groundTruth
and state estimates.

cfg = tunerconfig(class(filtTuned),'MaxIterations',15,'StepForward',1.1);
tunedmn = tune(filtTuned,mn,sensorData,groundTruth,cfg);

    Iteration    Parameter                 Metric
    _________    _________                 ______
    1            AccelerometerNoise        4.7634
    1            GyroscopeNoise            4.7439
    1            MagnetometerNoise         4.7260
    1            GPSPositionNoise          4.6562
    1            GPSVelocityNoise          4.4895
    1            QuaternionNoise           4.4895
    1            AngularVelocityNoise      4.1764
    1            PositionNoise             4.1764
    1            VelocityNoise             4.1764
    1            AccelerationNoise         4.1657
    1            GyroscopeBiasNoise        4.1657
    1            AccelerometerBiasNoise    4.1615
    1            GeomagneticVectorNoise    4.1615
    1            MagnetometerBiasNoise     4.1466
    2            AccelerometerNoise        4.1466
    2            GyroscopeNoise            4.1466
    2            MagnetometerNoise         4.1218
    2            GPSPositionNoise          4.1218
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    2            GPSVelocityNoise          3.9411
    2            QuaternionNoise           3.9404
    2            AngularVelocityNoise      3.2970
    2            PositionNoise             3.2970
    2            VelocityNoise             3.2970
    2            AccelerationNoise         3.2735
    2            GyroscopeBiasNoise        3.2735
    2            AccelerometerBiasNoise    3.2711
    2            GeomagneticVectorNoise    3.2711
    2            MagnetometerBiasNoise     3.2709
    3            AccelerometerNoise        3.2704
    3            GyroscopeNoise            3.2475
    3            MagnetometerNoise         3.2338
    3            GPSPositionNoise          3.2338
    3            GPSVelocityNoise          3.1333
    3            QuaternionNoise           3.1333
    3            AngularVelocityNoise      3.0267
    3            PositionNoise             3.0267
    3            VelocityNoise             3.0267
    3            AccelerationNoise         3.0267
    3            GyroscopeBiasNoise        3.0267
    3            AccelerometerBiasNoise    3.0248
    3            GeomagneticVectorNoise    3.0248
    3            MagnetometerBiasNoise     3.0184
    4            AccelerometerNoise        3.0156
    4            GyroscopeNoise            3.0028
    4            MagnetometerNoise         2.9903
    4            GPSPositionNoise          2.9872
    4            GPSVelocityNoise          2.9043
    4            QuaternionNoise           2.9043
    4            AngularVelocityNoise      2.7873
    4            PositionNoise             2.7873
    4            VelocityNoise             2.7873
    4            AccelerationNoise         2.7833
    4            GyroscopeBiasNoise        2.7833
    4            AccelerometerBiasNoise    2.7821
    4            GeomagneticVectorNoise    2.7821
    4            MagnetometerBiasNoise     2.7727
    5            AccelerometerNoise        2.7693
    5            GyroscopeNoise            2.7591
    5            MagnetometerNoise         2.7591
    5            GPSPositionNoise          2.7580
    5            GPSVelocityNoise          2.6806
    5            QuaternionNoise           2.6804
    5            AngularVelocityNoise      2.5956
    5            PositionNoise             2.5956
    5            VelocityNoise             2.5956
    5            AccelerationNoise         2.5880
    5            GyroscopeBiasNoise        2.5880
    5            AccelerometerBiasNoise    2.5874
    5            GeomagneticVectorNoise    2.5874
    5            MagnetometerBiasNoise     2.5693
    6            AccelerometerNoise        2.5651
    6            GyroscopeNoise            2.5529
    6            MagnetometerNoise         2.5472
    6            GPSPositionNoise          2.5344
    6            GPSVelocityNoise          2.4514
    6            QuaternionNoise           2.4514
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    6            AngularVelocityNoise      2.3829
    6            PositionNoise             2.3829
    6            VelocityNoise             2.3829
    6            AccelerationNoise         2.3826
    6            GyroscopeBiasNoise        2.3826
    6            AccelerometerBiasNoise    2.3822
    6            GeomagneticVectorNoise    2.3822
    6            MagnetometerBiasNoise     2.3675
    7            AccelerometerNoise        2.3640
    7            GyroscopeNoise            2.3547
    7            MagnetometerNoise         2.3540
    7            GPSPositionNoise          2.3428
    7            GPSVelocityNoise          2.2634
    7            QuaternionNoise           2.2633
    7            AngularVelocityNoise      2.2179
    7            PositionNoise             2.2179
    7            VelocityNoise             2.2179
    7            AccelerationNoise         2.2159
    7            GyroscopeBiasNoise        2.2159
    7            AccelerometerBiasNoise    2.2150
    7            GeomagneticVectorNoise    2.2150
    7            MagnetometerBiasNoise     2.2020
    8            AccelerometerNoise        2.1967
    8            GyroscopeNoise            2.1951
    8            MagnetometerNoise         2.1948
    8            GPSPositionNoise          2.1804
    8            GPSVelocityNoise          2.1153
    8            QuaternionNoise           2.1153
    8            AngularVelocityNoise      2.0978
    8            PositionNoise             2.0978
    8            VelocityNoise             2.0978
    8            AccelerationNoise         2.0944
    8            GyroscopeBiasNoise        2.0944
    8            AccelerometerBiasNoise    2.0944
    8            GeomagneticVectorNoise    2.0944
    8            MagnetometerBiasNoise     2.0822
    9            AccelerometerNoise        2.0771
    9            GyroscopeNoise            2.0758
    9            MagnetometerNoise         2.0754
    9            GPSPositionNoise          2.0645
    9            GPSVelocityNoise          2.0028
    9            QuaternionNoise           2.0027
    9            AngularVelocityNoise      1.9943
    9            PositionNoise             1.9943
    9            VelocityNoise             1.9943
    9            AccelerationNoise         1.9883
    9            GyroscopeBiasNoise        1.9883
    9            AccelerometerBiasNoise    1.9876
    9            GeomagneticVectorNoise    1.9876
    9            MagnetometerBiasNoise     1.9770
    10           AccelerometerNoise        1.9707
    10           GyroscopeNoise            1.9707
    10           MagnetometerNoise         1.9706
    10           GPSPositionNoise          1.9564
    10           GPSVelocityNoise          1.9005
    10           QuaternionNoise           1.9003
    10           AngularVelocityNoise      1.9003
    10           PositionNoise             1.9003
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    10           VelocityNoise             1.9003
    10           AccelerationNoise         1.8999
    10           GyroscopeBiasNoise        1.8999
    10           AccelerometerBiasNoise    1.8992
    10           GeomagneticVectorNoise    1.8992
    10           MagnetometerBiasNoise     1.8885
    11           AccelerometerNoise        1.8815
    11           GyroscopeNoise            1.8807
    11           MagnetometerNoise         1.8806
    11           GPSPositionNoise          1.8674
    11           GPSVelocityNoise          1.8111
    11           QuaternionNoise           1.8110
    11           AngularVelocityNoise      1.8110
    11           PositionNoise             1.8110
    11           VelocityNoise             1.8110
    11           AccelerationNoise         1.8094
    11           GyroscopeBiasNoise        1.8094
    11           AccelerometerBiasNoise    1.8085
    11           GeomagneticVectorNoise    1.8085
    11           MagnetometerBiasNoise     1.7984
    12           AccelerometerNoise        1.7921
    12           GyroscopeNoise            1.7919
    12           MagnetometerNoise         1.7902
    12           GPSPositionNoise          1.7774
    12           GPSVelocityNoise          1.7315
    12           QuaternionNoise           1.7313
    12           AngularVelocityNoise      1.7282
    12           PositionNoise             1.7282
    12           VelocityNoise             1.7282
    12           AccelerationNoise         1.7278
    12           GyroscopeBiasNoise        1.7278
    12           AccelerometerBiasNoise    1.7268
    12           GeomagneticVectorNoise    1.7268
    12           MagnetometerBiasNoise     1.7160
    13           AccelerometerNoise        1.7103
    13           GyroscopeNoise            1.7094
    13           MagnetometerNoise         1.7094
    13           GPSPositionNoise          1.6980
    13           GPSVelocityNoise          1.6589
    13           QuaternionNoise           1.6587
    13           AngularVelocityNoise      1.6587
    13           PositionNoise             1.6587
    13           VelocityNoise             1.6587
    13           AccelerationNoise         1.6575
    13           GyroscopeBiasNoise        1.6575
    13           AccelerometerBiasNoise    1.6566
    13           GeomagneticVectorNoise    1.6566
    13           MagnetometerBiasNoise     1.6480
    14           AccelerometerNoise        1.6432
    14           GyroscopeNoise            1.6422
    14           MagnetometerNoise         1.6415
    14           GPSPositionNoise          1.6330
    14           GPSVelocityNoise          1.6097
    14           QuaternionNoise           1.6095
    14           AngularVelocityNoise      1.6093
    14           PositionNoise             1.6093
    14           VelocityNoise             1.6093
    14           AccelerationNoise         1.6083
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    14           GyroscopeBiasNoise        1.6083
    14           AccelerometerBiasNoise    1.6077
    14           GeomagneticVectorNoise    1.6077
    14           MagnetometerBiasNoise     1.6012
    15           AccelerometerNoise        1.5972
    15           GyroscopeNoise            1.5949
    15           MagnetometerNoise         1.5942
    15           GPSPositionNoise          1.5886
    15           GPSVelocityNoise          1.5802
    15           QuaternionNoise           1.5801
    15           AngularVelocityNoise      1.5786
    15           PositionNoise             1.5786
    15           VelocityNoise             1.5786
    15           AccelerationNoise         1.5786
    15           GyroscopeBiasNoise        1.5786
    15           AccelerometerBiasNoise    1.5783
    15           GeomagneticVectorNoise    1.5783
    15           MagnetometerBiasNoise     1.5737

[posTunedEst, orientTunedEst] = fuse(filtTuned,sensorData,tunedmn);

Compare Tuned vs Untuned Filter

Plot the position estimates from the tuned and untuned filters along with the ground truth positions.
Then, plot the orientation error (quaternion distance) in degrees for both tuned and untuned filters.
The tuned filter estimates the position and orientation better than the untuned filter.

% Position error
figure;
t = sensorData.Time;
subplot(3,1,1);
plot(t, [posTunedEst(:,1) posUntunedEst(:,1) Position(:,1)]);
title('Position');
ylabel('X-axis');
legend('Tuned', 'Untuned', 'Truth');
subplot(3,1,2);
plot(t, [posTunedEst(:,2) posUntunedEst(:,2) Position(:,2)]);
ylabel('Y-axis');
subplot(3,1,3);
plot(t, [posTunedEst(:,3) posUntunedEst(:,3) Position(:,3)]);
ylabel('Z-axis');
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% Orientation Error
figure;
plot(t, rad2deg(dist(Orientation, orientTunedEst)), ...
    t, rad2deg(dist(Orientation, orientUntunedEst)));
title('Orientation Error');
ylabel('Degrees');
legend('Tuned', 'Untuned');
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Magnetometer Calibration
Magnetometers detect magnetic field strength along a sensor's X,Y and Z axes. Accurate magnetic
field measurements are essential for sensor fusion and the determination of heading and orientation.

In order to be useful for heading and orientation computation, typical low cost MEMS magnetometers
need to be calibrated to compensate for environmental noise and manufacturing defects.

Ideal Magnetometers

An ideal three-axis magnetometer measures magnetic field strength along orthogonal X, Y and Z
axes. Absent any magnetic interference, magnetometer readings measure the Earth's magnetic field.
If magnetometer measurements are taken as the sensor is rotated through all possible orientations,
the measurements should lie on a sphere. The radius of the sphere is the magnetic field strength.

To generate magnetic field samples, use the imuSensor object. For these purposes it is safe to
assume the angular velocity and acceleration are zero at each orientation.

N = 500;
rng(1);
acc = zeros(N,3);
av = zeros(N,3);
q = randrot(N,1); % uniformly distributed random rotations
imu = imuSensor('accel-mag');
[~,x] = imu(acc,av,q);
scatter3(x(:,1),x(:,2),x(:,3));
axis equal
title('Ideal Magnetometer Data');
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Hard Iron Effects

Noise sources and manufacturing defects degrade a magnetometer's measurement. The most striking
of these are hard iron effects. Hard iron effects are stationary interfering magnetic noise sources.
Often, these come from other metallic objects on the circuit board with the magnetometer. The hard
iron effects shift the origin of the ideal sphere.

imu.Magnetometer.ConstantBias = [2 10 40];
[~,x] = imu(acc,av,q);
figure;
scatter3(x(:,1),x(:,2),x(:,3));
axis equal
title('Magnetometer Data With a Hard Iron Offset');
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Soft Iron Effects

Soft iron effects are more subtle. They arise from objects near the sensor which distort the
surrounding magnetic field. These have the effect of stretching and tilting the sphere of ideal
measurements. The resulting measurements lie on an ellipsoid.

The soft iron magnetic field effects can be simulated by rotating the geomagnetic field vector of the
IMU to the sensor frame, stretching it, and then rotating it back to the global frame.

nedmf = imu.MagneticField;
Rsoft = [2.5 0.3 0.5; 0.3 2 .2; 0.5 0.2 3];
soft = rotateframe(conj(q),rotateframe(q,nedmf)*Rsoft);

for ii=1:numel(q)
    imu.MagneticField = soft(ii,:);
    [~,x(ii,:)] = imu(acc(ii,:),av(ii,:),q(ii));
end
figure;
scatter3(x(:,1),x(:,2),x(:,3));
axis equal
title('Magnetometer Data With Hard and Soft Iron Effects');
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Correction Technique

The magcal function can be used to determine magnetometer calibration parameters that account
for both hard and soft iron effects. Uncalibrated magnetometer data can be modeled as lying on an
ellipsoid with equation

In this equation R is a 3-by-3 matrix, b is a 1-by-3 vector defining the ellipsoid center, x is a 1-by-3
vector of uncalibrated magnetometer measurements, and  is a scalar indicating the magnetic field
strength. The above equation is the general form of a conic. For an ellipsoid, R must be positive
definite. The magcal function uses a variety of solvers, based on different assumptions about R. In
the magcal function, R can be assumed to be the identity matrix, a diagonal matrix, or a symmetric
matrix.

The magcal function produces correction coefficients that take measurements which lie on an offset
ellipsoid and transform them to lie on an ideal sphere, centered at the origin. The magcal function
returns a 3-by-3 real matrix A and a 1-by-3 vector b. To correct the uncalibrated data compute

Here x is a 1-by-3 array of uncalibrated magnetometer measurements and m is the 1-by-3 array of
corrected magnetometer measurements, which lie on a sphere. The matrix A has a determinant of 1
and is the matrix square root of R. Additionally, A has the same form as R : the identity, a diagonal, or

 Magnetometer Calibration

1-65



a symmetric matrix. Because these kinds of matrices cannot impart a rotation, the matrix A will not
rotate the magnetometer data during correction.

The magcal function also returns a third output which is the magnetic field strength . You can use
the magnetic field strength to set the ExpectedMagneticFieldStrength property of ahrsfilter.

Using the magcal Function

Use the magcal function to determine calibration parameters that correct noisy magnetometer data.
Create noisy magnetometer data by setting the NoiseDensity property of the Magnetometer
property in the imuSensor. Use the rotated and stretched magnetic field in the variable soft to
simulate soft iron effects.

imu.Magnetometer.NoiseDensity = 0.08;
for ii=1:numel(q)
    imu.MagneticField = soft(ii,:);
    [~,x(ii,:)] = imu(acc(ii,:),av(ii,:),q(ii));
end

To find the A and b parameters which best correct the uncalibrated magnetometer data, simply call
the function as:

[A,b,expMFS]  = magcal(x);
xCorrected = (x-b)*A;

Plot the original and corrected data. Show the ellipsoid that best fits the original data. Show the
sphere on which the corrected data should lie.

de = HelperDrawEllipsoid;
de.plotCalibrated(A,b,expMFS,x,xCorrected,'Auto');
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The magcal function uses a variety of solvers to minimize the residual error. The residual error is the
sum of the distances between the calibrated data and a sphere of radius expMFS.

r = sum(xCorrected.^2,2) - expMFS.^2;
E = sqrt(r.'*r./N)./(2*expMFS.^2);
fprintf('Residual error in corrected data : %.2f\n\n',E);

Residual error in corrected data : 0.01

You can run the individual solvers if only some defects need to be corrected or to achieve a simpler
correction computation.

Offset-Only Computation

Many MEMS magnetometers have registers within the sensor that can be used to compensate for the
hard iron offset. In effect, the (x-b) portion of the equation above happens on board the sensor. When
only a hard iron offset compensation is needed, the A matrix effectively becomes the identity matrix.
To determine the hard iron correction alone, the magcal function can be called this way:

[Aeye,beye,expMFSeye] = magcal(x,'eye');
xEyeCorrected = (x-beye)*Aeye;
[ax1,ax2] = de.plotCalibrated(Aeye,beye,expMFSeye,x,xEyeCorrected,'Eye');
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view(ax1,[-1 0 0]);
view(ax2,[-1 0 0]);

Hard Iron Compensation and Axis Scaling Computation

For many applications, treating the ellipsoid matrix as a diagonal matrix is sufficient. Geometrically,
this means the ellipsoid of uncalibrated magnetometer data is approximated to have its semiaxes
aligned with the coordinate system axes and a center offset from the origin. Though this is unlikely to
be the actual characteristics of the ellipsoid, it reduces the correction equation to a single multiply
and single subtract per axis.

[Adiag,bdiag,expMFSdiag] = magcal(x,'diag');
xDiagCorrected = (x-bdiag)*Adiag;
[ax1,ax2] = de.plotCalibrated(Adiag,bdiag,expMFSdiag,x,xDiagCorrected,...
    'Diag');
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Full Hard and Soft Iron Compensation

To force the magcal function to solve for an arbitrary ellipsoid and produce a dense, symmetric A
matrix, call the function as:

[A,b] = magcal(x,'sym');

Auto Fit

The 'eye', 'diag', and 'sym' flags should be used carefully and the output values inspected. In
some cases, there may be insufficient data for a high order ('diag' or 'sym') fit and a better set of
correction parameters can be found using a simpler A matrix. The 'auto' fit option, which is the
default, handles this situation.

Consider the case when insufficient data is used with a high order fitter.

xidx = x(:,3) > 100;
xpoor = x(xidx,:);
[Apoor,bpoor,mfspoor] = magcal(xpoor,'diag');

There is not enough data spread over the surface of the ellipsoid to achieve a good fit and proper
calibration parameters with the 'diag' option. As a result, the Apoor matrix is complex.

disp(Apoor)

   0.0000 + 0.4722i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.5981i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   3.5407 + 0.0000i
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Using the 'auto' fit option avoids this problem and finds a simpler A matrix which is real,
symmetric, and positive definite. Calling magcal with the 'auto' option string is the same as calling
without any option string.

[Abest,bbest,mfsbest] = magcal(xpoor,'auto');
disp(Abest)

     1     0     0
     0     1     0
     0     0     1

Comparing the results of using the 'auto' fitter and an incorrect, high order fitter show the perils of
not examining the returned A matrix before correcting the data.

de.compareBest(Abest,bbest,mfsbest,Apoor,bpoor,mfspoor,xpoor);

Calling the magcal function with the 'auto' flag, which is the default, will try all possibilities of
'eye', 'diag' and 'sym' searching for the A and b which minimizes the residual error, keeps A
real, and ensures R is positive definite and symmetric.

Conclusion

The magcal function can give calibration parameters to correct hard and soft iron offsets in a
magnetometer. Calling the function with no option string, or equivalently the 'auto' option string,
produces the best fit and covers most cases.
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Wheel Encoder Error Sources
Explore the various error sources of wheel encoders and how they affect the wheel odometry
estimate. After defining a ground truth trajectory, change parameters for wheel radius bias, wheel
position noise, wheel slippage, and track width for the various wheel encoder objects. Notice the
affects of changing these parameters on the output trajectory from the wheel encoder sensor models.

Ground Truth Trajectory

Create a ground truth trajectory to be used when examining the error parameters. Plot the trajectory.

Fs = 100;
wps = [0 0 0;
    20 0 0;
    20 5 0;
    0 5 0;
    0 0 0];
toa = cumsum([0 10 1.25*pi 10 1.25*pi]).';
vels = [2 0 0;
    2 0 0;
    -2 0 0;
    -2 0 0;
    2 0 0];

traj = waypointTrajectory(wps,...
    'SampleRate',Fs,'ReferenceFrame','ENU', ...
    'TimeOfArrival',toa,'Velocities',vels);

% Fetch pose values.
[pos,orient,vel,acc,angvel] = lookupPose(traj,toa(1):1/Fs:toa(end));
angvelBody = rotateframe(orient,angvel);

% Plot ground truth position.
figure
plot(pos(:,1),pos(:,2))
title('Position (Ground Truth)')
xlabel('X (m)')
ylabel('Y (m)')
axis equal
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Bias in the Wheel Radius

Create a wheel encoder sensor for a unicycle model as a wheelEncoderUnicycle object. Specify a
non-zero WheelRadiusBias and examine how it affects the odometry estimate. Specifying a positive
bias causes the odometry algorithm to underestimate the circumference of the wheel. This results in
the odometry estimating a smaller distance traveled.

encoder = wheelEncoderUnicycle;
encoder.WheelRadiusBias = 0.05;
odom = wheelEncoderOdometryUnicycle(encoder);

ticks = encoder(vel, angvel, orient);
estPose = odom(ticks, angvelBody(:,3));

% Plot ground truth and estimated positions.
figure
plot(pos(:,1),pos(:,2),estPose(:,1),estPose(:,2))
title('Position (Wheel Radius Bias)')
xlabel('X (m)')
ylabel('Y (m)')
legend('Ground truth','Odometry')
axis equal
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Noise in the Wheel Position Measurement

Specify a non-zero WheelPositionAccuracy and examine how it affects the odometry estimate.This
noise adds random deviations to the measured ticks from the wheel encoder.

encoder = wheelEncoderUnicycle;
encoder.WheelPositionAccuracy = 0.1;
% Use a local random stream to reproduce results.
encoder.RandomStream = 'mt19937ar with seed';
odom = wheelEncoderOdometryUnicycle(encoder);

ticks = encoder(vel,angvel,orient);
estPose = odom(ticks,angvelBody(:,3));

% Plot ground truth and estimated positions.
figure
plot(pos(:,1),pos(:,2),estPose(:,1),estPose(:,2))
title('Position (Wheel Position Noise)')
xlabel('X (m)')
ylabel('Y (m)')
legend('Ground truth', 'Odometry')
axis equal
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Wheel Slippage and Skidding

Specify a non-zero SlipRatio and examine how it affects the odometry estimate. Specifying a value
greater than zero simulates wheel slipping. This slippage results in the odometry estimating a larger
distance traveled. A negative value for slip ratio inidates skidding.

encoder = wheelEncoderUnicycle;
encoder.SlipRatio = 0.25;
odom = wheelEncoderOdometryUnicycle(encoder);

ticks = encoder(vel, angvel, orient);
estPose = odom(ticks, angvelBody(:,3));

% Plot ground truth and estimated positions.
figure
plot(pos(:,1),pos(:,2),estPose(:,1),estPose(:,2))
title('Position (Wheel Slippage)')
xlabel('X (m)')
ylabel('Y (m)')
legend('Ground truth', 'Odometry')
axis equal

1 Navigation Featured Examples

1-74



Bias in the Track Width

Specify a non-zero TrackWidthBias and examine how it affects the odometry estimate.Specifying a
positive bias will cause the odometry algorithm to overestimate the turning angle of the vehicle. This
overestimation of turning results in drift acumulating in the odometry estimate at turns. For this
scenario, a vehicle with an axle is needed, so use the wheelEncoderDifferentialDrive object.

encoder = wheelEncoderDifferentialDrive;
encoder.TrackWidthBias = 0.1;
odom = wheelEncoderOdometryDifferentialDrive(encoder);

ticks = encoder(vel,angvel,orient);
estPose = odom(ticks);

% Plot ground truth and estimated positions.
figure
plot(pos(:,1),pos(:,2), estPose(:,1), estPose(:,2))
title('Position (Track Width Bias)')
xlabel('X (m)')
ylabel('Y (m)')
legend('Ground truth', 'Odometry')
axis equal
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Differing Biases in the Wheels

Specify different non-zero values for the WheelRadiusBias and examine how it affects the odometry
estimate.Specifying different biases causes the odometry estimate to drift throughout the entire
trajectory. For this scenario, two wheels are needed, so use the wheelEncoderDifferentialDrive
object.

encoder = wheelEncoderDifferentialDrive;
encoder.WheelRadiusBias = [-0.01, 0.001];
odom = wheelEncoderOdometryDifferentialDrive(encoder);

ticks = encoder(vel, angvel, orient);
estPose = odom(ticks);

% Plot ground truth and estimated positions.
figure
plot(pos(:,1),pos(:,2), estPose(:,1), estPose(:,2))
title('Position (Different Wheel Biases)')
xlabel('X (m)')
ylabel('Y (m)')
legend('Ground truth', 'Odometry')
axis equal
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Remove Bias from Angular Velocity Measurement
This example shows how to remove gyroscope bias from an IMU using imufilter.

Use kinematicTrajectory to create a trajectory with two parts. The first part has a constant
angular velocity about the y- and z-axes. The second part has a varying angular velocity in all three
axes.

duration = 60*8;
fs = 20;
numSamples = duration * fs;
rng('default') % Seed the RNG to reproduce noisy sensor measurements.

initialAngVel = [0,0.5,0.25];
finalAngVel = [-0.2,0.6,0.5];
constantAngVel = repmat(initialAngVel,floor(numSamples/2),1);
varyingAngVel = [linspace(initialAngVel(1), finalAngVel(1), ceil(numSamples/2)).', ...
    linspace(initialAngVel(2), finalAngVel(2), ceil(numSamples/2)).', ...
    linspace(initialAngVel(3), finalAngVel(3), ceil(numSamples/2)).'];

angVelBody = [constantAngVel; varyingAngVel];
accBody = zeros(numSamples,3);

traj = kinematicTrajectory('SampleRate',fs);

[~,qNED,~,accNED,angVelNED] = traj(accBody,angVelBody);

Create an imuSensor System object™, IMU, with a nonideal gyroscope. Call IMU with the ground-
truth acceleration, angular velocity, and orientation.

IMU = imuSensor('accel-gyro', ...
    'Gyroscope',gyroparams('RandomWalk',0.003,'ConstantBias',0.3), ...
    'SampleRate',fs);

[accelReadings, gyroReadingsBody] = IMU(accNED,angVelNED,qNED);

Create an imufilter System object, fuse. Call fuse with the modeled accelerometer readings and
gyroscope readings.

fuse = imufilter('SampleRate',fs, 'GyroscopeDriftNoise', 1e-6);

[~,angVelBodyRecovered] = fuse(accelReadings,gyroReadingsBody);

Plot the ground-truth angular velocity, the gyroscope readings, and the recovered angular velocity for
each axis.

The angular velocity returned from the imufilter compensates for the effect of the gyroscope bias
over time and converges to the true angular velocity.

time = (0:numSamples-1)'/fs;

figure(1)
plot(time,angVelBody(:,1), ...
     time,gyroReadingsBody(:,1), ...
     time,angVelBodyRecovered(:,1))
title('X-axis')
legend('True Angular Velocity', ...
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       'Gyroscope Readings', ...
       'Recovered Angular Velocity')
ylabel('Angular Velocity (rad/s)')

figure(2)
plot(time,angVelBody(:,2), ...
     time,gyroReadingsBody(:,2), ...
     time,angVelBodyRecovered(:,2))
title('Y-axis')
ylabel('Angular Velocity (rad/s)')
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figure(3)
plot(time,angVelBody(:,3), ...
     time,gyroReadingsBody(:,3), ...
     time,angVelBodyRecovered(:,3))
title('Z-axis')
ylabel('Angular Velocity (rad/s)')
xlabel('Time (s)')
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Detect Noise in Sensor Readings with Residual Filtering
This example shows how to use the residualgps object function and residual filtering to detect
when new sensor measurements may not be consistent with the current filter state.

Load Trajectory and Sensor Data

Load the MAT-file loggedDataWithMultipath.mat. This file contains simulated IMU and GPS data
as well as the ground truth position and orientation of a circular trajectory. The GPS data contains
errors due to multipath errors in one section of the trajectory. These errors were modelled by adding
white noise to the GPS data to simulate the effects of an urban canyon.

load('loggedDataWithMultipath.mat', ...
    'imuFs', 'accel', 'gyro', ... % IMU readings
    'gpsFs', 'lla', 'gpsVel', ... % GPS readings
    'truePosition', 'trueOrientation', ... % Ground truth pose
    'localOrigin', 'initialState', 'multipathAngles')

% Number of IMU samples per GPS sample.
imuSamplesPerGPS = (imuFs/gpsFs);

% First and last indices corresponding to multipath errors.
multipathIndices = [1850 2020];

Fusion Filter

Create two pose estimation filters using the insfilterNonholonomic object. Use one filter to
process all the sensor readings. Use the other filter to only process the sensor readings that are not
considered outliers.

% Create filters.

% Use this filter to only process sensor readings that are not detected as
% outliers.
gndFusionWithDetection = insfilterNonholonomic('ReferenceFrame', 'ENU', ...
    'IMUSampleRate', imuFs, ...
    'ReferenceLocation', localOrigin, ...
    'DecimationFactor', 2);
% Use this filter to process all sensor readings, regardless of whether or
% not they are outliers.
gndFusionNoDetection = insfilterNonholonomic('ReferenceFrame', 'ENU', ...
    'IMUSampleRate', imuFs, ...
    'ReferenceLocation', localOrigin, ...
    'DecimationFactor', 2);

% GPS measurement noises.
Rvel = 0.01;
Rpos = 1;

% The dynamic model of the ground vehicle for this filter assumes there is
% no side slip or skid during movement. This means that the velocity is
% constrained to only the forward body axis. The other two velocity axis
% readings are corrected with a zero measurement weighted by the
% |ZeroVelocityConstraintNoise| parameter.
gndFusionWithDetection.ZeroVelocityConstraintNoise = 1e-2;
gndFusionNoDetection.ZeroVelocityConstraintNoise = 1e-2;
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% Process noises.
gndFusionWithDetection.GyroscopeNoise = 4e-6;
gndFusionWithDetection.GyroscopeBiasNoise = 4e-14;
gndFusionWithDetection.AccelerometerNoise = 4.8e-2;
gndFusionWithDetection.AccelerometerBiasNoise = 4e-14;
gndFusionNoDetection.GyroscopeNoise = 4e-6;
gndFusionNoDetection.GyroscopeBiasNoise = 4e-14;
gndFusionNoDetection.AccelerometerNoise = 4.8e-2;
gndFusionNoDetection.AccelerometerBiasNoise = 4e-14;

% Initial filter states.
gndFusionWithDetection.State = initialState;
gndFusionNoDetection.State = initialState;

% Initial error covariance.
gndFusionWithDetection.StateCovariance = 1e-9*ones(16);
gndFusionNoDetection.StateCovariance = 1e-9*ones(16);

Initialize Scopes

The HelperPoseViewer scope allows a 3-D visualization comparing the filter estimate and ground
truth. Using multiple scopes can slow the simulation. To disable the scopes, set the corresponding
logical variable to false.

usePoseView = true;  % Turn on the 3D pose viewer

if usePoseView
    [viewerWithDetection, viewerNoDetection, annoHandle] ...
        = helperCreatePoseViewers(initialState, multipathAngles);
end

Simulation Loop

The main simulation loop is a for loop with a nested for loop. The first loop executes at the gpsFs,
which is the GPS measurement rate. The nested loop executes at the imuFs, which is the IMU sample
rate. Each scope is updated at the IMU sample rate.

numsamples = numel(trueOrientation);
numGPSSamples = numsamples/imuSamplesPerGPS;

% Log data for final metric computation.
estPositionNoCheck = zeros(numsamples, 3);
estOrientationNoCheck = quaternion.zeros(numsamples, 1);

estPosition = zeros(numsamples, 3);
estOrientation = quaternion.zeros(numsamples, 1);

% Threshold for outlier residuals.
residualThreshold = 6;

idx = 0;
for sampleIdx = 1:numGPSSamples
    % Predict loop at IMU update frequency.
    for i = 1:imuSamplesPerGPS
        idx = idx + 1;

        % Use the predict method to estimate the filter state based
        % on the accelData and gyroData arrays.

 Detect Noise in Sensor Readings with Residual Filtering

1-83



        predict(gndFusionWithDetection, accel(idx,:), gyro(idx,:));

        predict(gndFusionNoDetection, accel(idx,:), gyro(idx,:));

        % Log the estimated orientation and position.
        [estPositionNoCheck(idx,:), estOrientationNoCheck(idx,:)] ...
            = pose(gndFusionWithDetection);

        [estPosition(idx,:), estOrientation(idx,:)] ...
            = pose(gndFusionNoDetection);

        % Update the pose viewer.
        if usePoseView
            viewerWithDetection(estPositionNoCheck(idx,:), ...
                estOrientationNoCheck(idx,:), ...
                truePosition(idx,:), trueOrientation(idx,:));

            viewerNoDetection(estPosition(idx,:), ...
                estOrientation(idx,:), truePosition(idx,:), ...
                trueOrientation(idx,:));
        end
    end

    % This next section of code runs at the GPS sample rate.

    % Update the filter states based on the GPS data.
    fusegps(gndFusionWithDetection, lla(sampleIdx,:), Rpos, ...
        gpsVel(sampleIdx,:), Rvel);

    % Check the normalized residual of the current GPS reading. If the
    % value is too large, it is considered an outlier and disregarded.
    [res, resCov] = residualgps(gndFusionNoDetection, lla(sampleIdx,:), ...
        Rpos, gpsVel(sampleIdx,:), Rvel);
    normalizedRes = res(1:3) ./ sqrt( diag(resCov(1:3,1:3)).' );
    if (all(abs(normalizedRes) <= residualThreshold))
        % Update the filter states based on the GPS data.
        fusegps(gndFusionNoDetection, lla(sampleIdx,:), Rpos, ...
            gpsVel(sampleIdx,:), Rvel);
        if usePoseView
            set(annoHandle, 'String', 'Outlier status: none', ...
                'EdgeColor', 'k');
        end
    else
        if usePoseView
            set(annoHandle, 'String', 'Outlier status: detected', ...
                'EdgeColor', 'r');
        end
    end
end
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Error Metric Computation

Calculate the position error for both filter estimates. There is an increase in the position error in the
filter that does not check for any outliers in the GPS measurements.

% Calculate position errors.
posdNoCheck = estPositionNoCheck - truePosition;
posd = estPosition - truePosition;

% Plot results.
t = (0:size(posd,1)-1).' ./ imuFs;
figure('Units', 'normalized', 'Position', [0.2615 0.2833 0.4552 0.3700])
subplot(1, 2, 1)
plot(t, posdNoCheck)
ax = gca;
yLims = get(ax, 'YLim');
hold on
mi = multipathIndices;
fill([t(mi(1)), t(mi(1)), t(mi(2)), t(mi(2))], [7 -5 -5 7], ...
    [1 0 0],'FaceAlpha', 0.2);
set(ax, 'YLim', yLims);
title('Position Error (No outlier removal)')
xlabel('time (s)')
ylabel('error (m)')
legend('x', 'y', 'z', sprintf('outlier\nregion'))

subplot(1, 2, 2)
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plot(t, posd)
ax = gca;
yLims = get(ax, 'YLim');
hold on
mi = multipathIndices;
fill([t(mi(1)), t(mi(1)), t(mi(2)), t(mi(2))], [7 -5 -5 7], ...
    [1 0 0],'FaceAlpha', 0.2);
set(ax, 'YLim', yLims);
title('Position Error (Outlier removal)')
xlabel('time (s)')
ylabel('error (m)')
legend('x', 'y', 'z', sprintf('outlier\nregion'))

Conclusion

The residualgps object function can be used to detect potential outliers in sensor measurements
before using them to update the filter states of the insfilterNonholonomic object. The other pose
estimation filter objects such as, insfilterMARG, insfilterAsync, and insfilterErrorState
also have similar object functions to calculate sensor measurement residuals.
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Estimate Orientation and Height Using IMU, Magnetometer,
and Altimeter

This example shows how to fuse data from a 3-axis accelerometer, 3-axis gyroscope, 3-axis
magnetometer (together commonly referred to as a MARG sensor for Magnetic, Angular Rate, and
Gravity), and 1-axis altimeter to estimate orientation and height.

Simulation Setup

This simulation processes sensor data at multiple rates. The IMU (accelerometer and gyroscope)
typically runs at the highest rate. The magnetometer generally runs at a lower rate than the IMU, and
the altimeter runs at the lowest rate. Changing the sample rates causes parts of the fusion algorithm
to run more frequently and can affect performance.

% Set the sampling rate for IMU sensors, magnetometer, and altimeter.
imuFs = 100;
altFs = 10;
magFs = 25;
imuSamplesPerAlt = fix(imuFs/altFs);
imuSamplesPerMag = fix(imuFs/magFs);

% Set the number of samples to simulate. 
N = 1000; 

% Construct object for other helper functions.
hfunc = Helper10AxisFusion;

Define Trajectory

The sensor body rotates about all three axes while oscillating in position vertically. The oscillations
increase in magnitude as the simulation continues.

% Define the initial state of the sensor body
initPos = [0, 0, 0];       % initial position (m)
initVel = [0, 0, -1];      % initial linear velocity (m/s)
initOrient = ones(1, 'quaternion'); 

% Define the constant angular velocity for rotating the sensor body
% (rad/s).
angVel = [0.34 0.2 0.045];  

% Define the acceleration required for simple oscillating motion of the
% sensor body.
fc = 0.2; 
t = 0:1/imuFs:(N-1)/imuFs;
a = 1; 
oscMotionAcc = sin(2*pi*fc*t);
oscMotionAcc = hfunc.growAmplitude(oscMotionAcc);

% Construct the trajectory object
traj = kinematicTrajectory('SampleRate', imuFs, ...
    'Velocity', initVel, ...
    'Position', initPos, ...
    'Orientation', initOrient);
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Sensor Configuration

The accelerometer, gyroscope and magnetometer are simulated using imuSensor. The altimeter is
modeled using the altimeterSensor. The values used in the sensor configurations correspond to
real MEMS sensor values.

imu = imuSensor('accel-gyro-mag', 'SampleRate', imuFs);

% Accelerometer
imu.Accelerometer.MeasurementRange =  19.6133;
imu.Accelerometer.Resolution = 0.0023928;
imu.Accelerometer.ConstantBias = 0.19;
imu.Accelerometer.NoiseDensity = 0.0012356;

% Gyroscope
imu.Gyroscope.MeasurementRange = deg2rad(250);
imu.Gyroscope.Resolution = deg2rad(0.0625);
imu.Gyroscope.ConstantBias = deg2rad(3.125);
imu.Gyroscope.AxesMisalignment = 1.5;
imu.Gyroscope.NoiseDensity = deg2rad(0.025);

% Magnetometer
imu.Magnetometer.MeasurementRange = 1000;
imu.Magnetometer.Resolution = 0.1;
imu.Magnetometer.ConstantBias = 100;
imu.Magnetometer.NoiseDensity = 0.3/sqrt(50);

% altimeter
altimeter = altimeterSensor('UpdateRate', altFs, 'NoiseDensity', 2*0.1549);

Fusion Filter

Construct an ahrs10filter and configure.

fusionfilt = ahrs10filter; 
fusionfilt.IMUSampleRate = imuFs;

Set initial values for the fusion filter.

initstate = zeros(18,1);
initstate(1:4) = compact(initOrient);
initstate(5) = initPos(3);
initstate(6) = initVel(3);
initstate(7:9) = imu.Gyroscope.ConstantBias/imuFs;
initstate(10:12) = imu.Accelerometer.ConstantBias/imuFs;
initstate(13:15) = imu.MagneticField;
initstate(16:18) = imu.Magnetometer.ConstantBias;
fusionfilt.State = initstate;

Initialize the state covariance matrix of the fusion filter. The ground truth is used for initial states, so
there should be little error in the estimates.

icv = diag([1e-8*[1 1 1 1 1 1 1], 1e-3*ones(1,11)]);
fusionfilt.StateCovariance = icv;

Magnetometer and altimeter measurement noises are the observation noises associated with the
sensors used by the internal Kalman filter in the ahrs10filter. These values would normally come
from a sensor datasheet.
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magNoise =  2*(imu.Magnetometer.NoiseDensity(1).^2)*imuFs;
altimeterNoise = 2*(altimeter.NoiseDensity).^2 * altFs;

Filter process noises are used to tune the filter to desired performance.

fusionfilt.AccelerometerNoise = [1e-1 1e-1 1e-4];
fusionfilt.AccelerometerBiasNoise = 1e-8;
fusionfilt.GeomagneticVectorNoise = 1e-12;
fusionfilt.MagnetometerBiasNoise = 1e-12;
fusionfilt.GyroscopeNoise = 1e-12;

Additional Simulation Option : Viewer

By default, this simulation plots the estimation errors at the end of the simulation. To view both the
estimated position and orientation along with the ground truth as the simulation runs, set the
usePoseViewer variable to true.

usePoseViewer = false;

Simulation Loop

q = initOrient;
firstTime = true;

actQ = zeros(N,1, 'quaternion');
expQ = zeros(N,1, 'quaternion');
actP = zeros(N,1);
expP = zeros(N,1);

for ii = 1: N
    % Generate a new set of samples from the trajectory generator 
    accBody = rotateframe(q, [0 0 +oscMotionAcc(ii)]);
    omgBody = rotateframe(q, angVel);
    [pos, q, vel, acc] = traj(accBody, omgBody);
    
    % Feed the current position and orientation to the imuSensor object
    [accel, gyro, mag] = imu(acc, omgBody, q);
    fusionfilt.predict(accel, gyro);
   
    % Fuse magnetometer samples at the magnetometer sample rate
    if ~mod(ii,imuSamplesPerMag)
        fusemag(fusionfilt, mag, magNoise);
    end

    % Sample and fuse the altimeter output at the altimeter sample rate
    if ~mod(ii,imuSamplesPerAlt)
        altHeight = altimeter(pos);
       
        % Use the |fusealtimeter| method to update the fusion filter with
        % the altimeter output.
        fusealtimeter(fusionfilt,altHeight,altimeterNoise);
    end

    % Log the actual orientation and position
    [actP(ii), actQ(ii)] = pose(fusionfilt);
    
    % Log the expected orientation and position
    expQ(ii) = q;
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    expP(ii) = pos(3);

    if usePoseViewer
        hfunc.view(actP(ii), actQ(ii),expP(ii), expQ(ii)); %#ok<*UNRCH>
    end

end

Plot Filter Performance

Plot the performance of the filter. The display shows the error in the orientation using quaternion
distance and height error.

hfunc.plotErrs(actP, actQ, expP, expQ);

Conclusion

This example shows how to the ahrs10filter to perform 10-axis sensor fusion for height and
orientation.
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Estimate Orientation with a Complementary Filter and IMU
Data

This example shows how to stream IMU data from an Arduino and estimate orientation using a
complementary filter.

Connect Hardware

Connect the SDA, SCL, GND, and VCC pins of the MPU-9250 sensor to the corresponding pins of the
Arduino® hardware. This example uses an Arduino® Uno board with the following connections:

• SDA - A4
• SCL - A5
• VCC - +3.3V
• GND - GND
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Ensure that the connections to the sensors are intact. It is recommended to attach/connect the sensor
to a prototype shield to avoid loose connections while the sensor is in motion. Refer the
Troubleshooting Sensors page to debug the sensor related issues.

Create Sensor Object

Create an arduino object and an mpu9250 object. Specify the sensor sampling rate Fs and the
amount of time to run the loops. Optionally, enable the isVerbose flag to check if any samples are
overrun. By disabling the useHW flag, you can also run the example with sensor data saved in the
MAT-file loggedMPU9250Data.mat.

The data in loggedMPU9250Data.mat was logged while the IMU was generally facing due South,
then rotated:

• +90 degrees around the z-axis
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• -180 degrees around the z-axis
• +90 degrees around the z-axis
• +90 degrees around the y-axis
• -180 degrees around the y-axis
• +90 degrees around the y-axis
• +90 degrees around the x-axis
• -270 degrees around the x-axis
• +180 degrees around the x-axis

Notice that the last two rotations around the x-axis are an additional 90 degrees. This was done to flip
the device upside-down. The final orientation of the IMU is the same as the initial orientation, due
South.

Fs = 100;
samplesPerRead = 10;
runTime = 20;
isVerbose = false;
useHW = true;

if useHW
    a = arduino;
    imu = mpu9250(a, 'SampleRate', Fs, 'OutputFormat', 'matrix', ...
        'SamplesPerRead', samplesPerRead, 'Streaming', true);
else
    load('loggedMPU9250Data.mat', 'allAccel', 'allGyro', 'allMag', ...
        'allT', 'allOverrun', ...
        'numSamplesAccelGyro', 'numSamplesAccelGyroMag')
end

Align Axes of MPU-9250 Sensor with NED Coordinates

The axes of the accelerometer, gyroscope, and magnetometer in the MPU-9250 are not aligned with
each other. Specify the index and sign x-, y-, and z-axis of each sensor so that the sensor is aligned
with the North-East-Down (NED) coordinate system when it is at rest. In this example, the
magnetometer axes are changed while the accelerometer and gyroscope axes remain fixed. For your
own applications, change the following parameters as necessary.

% Accelerometer axes parameters.
accelXAxisIndex = 1;
accelXAxisSign = 1;
accelYAxisIndex = 2;
accelYAxisSign = 1;
accelZAxisIndex = 3;
accelZAxisSign = 1;

% Gyroscope axes parameters.
gyroXAxisIndex = 1;
gyroXAxisSign = 1;
gyroYAxisIndex = 2;
gyroYAxisSign = 1;
gyroZAxisIndex = 3;
gyroZAxisSign = 1;

% Magnetometer axes parameters.
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magXAxisIndex = 2;
magXAxisSign = 1;
magYAxisIndex = 1;
magYAxisSign = 1;
magZAxisIndex = 3;
magZAxisSign = -1;

% Helper functions used to align sensor data axes.

alignAccelAxes = @(in) [accelXAxisSign, accelYAxisSign, accelZAxisSign] ...
    .* in(:, [accelXAxisIndex, accelYAxisIndex, accelZAxisIndex]);

alignGyroAxes = @(in) [gyroXAxisSign, gyroYAxisSign, gyroZAxisSign] ...
    .* in(:, [gyroXAxisIndex, gyroYAxisIndex, gyroZAxisIndex]);

alignMagAxes = @(in) [magXAxisSign, magYAxisSign, magZAxisSign] ...
    .* in(:, [magXAxisIndex, magYAxisIndex, magZAxisIndex]);

Perform Additional Sensor Calibration

If necessary, you may calibrate the magnetometer to compensate for magnetic distortions. For more
details, see the Compensating for Hard Iron Distortions section of the “Estimating Orientation Using
Inertial Sensor Fusion and MPU-9250” (Sensor Fusion and Tracking Toolbox) example.

Specify Complementary filter Parameters

The complementaryFilter has two tunable parameters. The AccelerometerGain parameter
determines how much the accelerometer measurement is trusted over the gyroscope measurement.
The MagnetometerGain parameter determines how much the magnetometer measurement is
trusted over the gyroscope measurement.

compFilt = complementaryFilter('SampleRate', Fs)

compFilt = 

  complementaryFilter with properties:

           SampleRate: 100
    AccelerometerGain: 0.0100
     MagnetometerGain: 0.0100
      HasMagnetometer: 1
    OrientationFormat: 'quaternion'

Estimate Orientation with Accelerometer and Gyroscope

Set the HasMagnetometer property to false to disable the magnetometer measurement input. In
this mode, the filter only takes accelerometer and gyroscope measurements as inputs. Also, the filter
assumes the initial orientation of the IMU is aligned with the parent navigation frame. If the IMU is
not aligned with the navigation frame initially, there will be a constant offset in the orientation
estimation.

compFilt = complementaryFilter('HasMagnetometer', false);

tuner = HelperOrientationFilterTuner(compFilt);

if useHW
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    tic
else
    idx = 1:samplesPerRead;
    overrunIdx = 1;
end
while true
    if useHW
        [accel, gyro, mag, t, overrun] = imu();
        accel = alignAccelAxes(accel);
        gyro = alignGyroAxes(gyro);
    else
        accel = allAccel(idx,:);
        gyro = allGyro(idx,:);
        mag = allMag(idx,:);
        t = allT(idx,:);
        overrun = allOverrun(overrunIdx,:);

        idx = idx + samplesPerRead;
        overrunIdx = overrunIdx + 1;
        pause(samplesPerRead/Fs)
    end

    if (isVerbose && overrun > 0)
        fprintf('%d samples overrun ...\n', overrun);
    end

    q = compFilt(accel, gyro);
    update(tuner, q);

    if useHW
        if toc >= runTime
            break;
        end
    else
        if idx(end) > numSamplesAccelGyro
            break;
        end
    end
end
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Estimate Orientation with Accelerometer, Gyroscope, and Magnetometer

With the default values of AccelerometerGain and MagnetometerGain, the filter trusts more on
the gyroscope measurements in the short-term, but trusts more on the accelerometer and
magnetometer measurements in the long-term. This allows the filter to be more reactive to quick
orientation changes and prevents the orientation estimates from drifting over longer periods of time.
For specific IMU sensors and application purposes, you may want to tune the parameters of the filter
to improve the orientation estimation accuracy.

compFilt = complementaryFilter('SampleRate', Fs);

tuner = HelperOrientationFilterTuner(compFilt);

if useHW
    tic
end
while true
    if useHW
        [accel, gyro, mag, t, overrun] = imu();
        accel = alignAccelAxes(accel);
        gyro = alignGyroAxes(gyro);
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        mag = alignMagAxes(mag);
    else
        accel = allAccel(idx,:);
        gyro = allGyro(idx,:);
        mag = allMag(idx,:);
        t = allT(idx,:);
        overrun = allOverrun(overrunIdx,:);

        idx = idx + samplesPerRead;
        overrunIdx = overrunIdx + 1;
        pause(samplesPerRead/Fs)
    end

    if (isVerbose && overrun > 0)
        fprintf('%d samples overrun ...\n', overrun);
    end

    q = compFilt(accel, gyro, mag);
    update(tuner, q);

    if useHW
        if toc >= runTime
            break;
        end
    else
        if idx(end) > numSamplesAccelGyroMag
            break;
        end
    end
end
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Summary

This example showed how to estimate the orientation of an IMU using data from an Arduino and a
complementary filter. This example also showed how to configure the IMU and discussed the effects
of tuning the complementary filter parameters.
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Estimating Orientation Using Inertial Sensor Fusion and
MPU-9250

This example shows how to get data from an InvenSense MPU-9250 IMU sensor and to use the 6-axis
and 9-axis fusion algorithms in the sensor data to compute orientation of the device.

MPU-9250 is a 9-axis sensor with accelerometer,gyroscope, and magnetometer. The accelerometer
measures acceleration, the gyroscope measures angular velocity, and the magnetometer measures
magnetic field in x-, y- and z- axis. The axis of the sensor depends on the make of the sensor.

Required MathWorks® Products

• MATLAB®
• MATLAB Support Package for Arduino® Hardware
• Sensor Fusion and Tracking Toolbox™

Required Hardware

• Arduino Uno
• InvenSense MPU-9250

Hardware Connection

Connect the SDA, SCL, GND, and the VCC pins of the MPU-9250 sensor to the corresponding pins on
the Arduino® Hardware. This example uses the Arduino Uno board with the following connections:

• SDA - A4
• SCL - A5
• VCC - +3.3V
• GND - GND
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Ensure that the connections to the sensors are intact. It is recommended to use a prototype shield
and solder the sensor to it to avoid loose connections while moving the sensor. Refer the
“Troubleshooting Sensors” (MATLAB Support Package for Arduino Hardware) page for sensors to
debug the sensor related issues.

Create Sensor Object

Create an arduino object and include the I2C library.

a = arduino('COM9', 'Uno', 'Libraries', 'I2C');

Updating server code on board Uno (COM9). This may take a few minutes.

Create the MPU-9250 sensor object.

fs = 100; % Sample Rate in Hz   
imu = mpu9250(a,'SampleRate',fs,'OutputFormat','matrix'); 
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Compensating For Hard Iron Distortions

Fusion algorithms use magnetometer readings which need to compensate for magnetic distortions
such as hard iron distortion. Hard iron distortions are produced by materials which create a magnetic
field, resulting in shifting the origin on the response surface. These distortions can be corrected by
subtracting the correction values from the magnetometer readings for each axis. In order to find the
correction values, do the following:

1. Rotate the sensor from 0 to 360 degree around each axis.

2. Obtain the minimum and maximum magnetometer readings.

3. Average the minimum and maximum readings to get the correction values for each axis.

The correction values change with the surroundings.

The following code snippets can be used to obtain bias values for x axis, similar procedure can be
followed for other axes as well:

displayMessage(['Fusion algorithms use magnetometer readings which need to compensate for magnetic distortions.' ...
    'The given code snippet can be used to find the correction values for compensating Hard Iron Distortions. When the code '...
    'is executing, rotate the sensor around x axis from 0 to 360 degree. For other axes, modify the code accordingly and rotate the ' ...
    'sensor along that axis'],'Compensating Hard Iron Distortions');
tic;
stopTimer = 100;
magReadings=[];
while(toc<stopTimer)
    % Rotate the sensor around x axis from 0 to 360 degree.
    % Take 2-3 rotations to improve accuracy.
    % For other axes, rotate around that axis.
    [accel,gyro,mag] = read(imu);
    magReadings = [magReadings;mag];
end

% For y axis, use magReadings (:,2) and for z axis use magReadings(:,3)
magx_min = min(magReadings(:,1));
magx_max = max(magReadings(:,1));
magx_correction = (magx_max+magx_min)/2;

For more accurate tracking, calibrate the magnetometer for other distortions as well. The magcal
function (this function is available in the Sensor Fusion and Tracking Toolbox™) can be used to
compensate soft iron distortions as well. Change the correction values calculated for your sensor in
the readSensorDataMPU9250 function in the example folder.

Aligning the axis of MPU-9250 sensor with NED Coordinates

Sensor Fusion algorithms used in this example use North-East-Down(NED) as a fixed, parent
coordinate system. In the NED reference frame, the X-axis points north, the Y-axis points east, and
the Z-axis points down. Depending on the algorithm, north may either be the magnetic north or true
north. The algorithms in this example use the magnetic north. The algorithms used here expects all
the sensors in the object to have their axis aligned and is in accordance with NED convention.

MPU-9250 has two devices, the magnetometer and the accelerometer-gyroscope, on the same board.
The axes of these devices are different from each other. The magnetometer axis is aligned with the
NED coordinates. The axis of the accelerometer-gyroscope is different from magnetometer in
MPU-9250. The accelerometer and the gyroscope axis need to be swapped and/or inverted to match
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the magnetometer axis. For more information refer to the section “Orientation of Axes” section in
MPU-9250 datasheet.

To align MPU-9250 accelerometer-gyroscope axes to NED coordinates, do the following:

1. Define device axes: Define the imaginary axis as the device axis on the sensor in accordance to
NED coordinate system which may or may not be same as sensor axes. For MPU-9250, magnetometer
axis can be considered as device axis.

2. Swap the x and y values of accelerometer and gyroscope readings, so that the accelerometer and
gyroscope axis is aligned with magnetometer axis.

3. Determine polarity values for accelerometer, and gyroscope.

a. Accelerometer

• Place the sensor such that device X axis is pointing downwards, perpendicular to the surface at
which sensor is kept. Accelerometer readings should read approximately [9.8 0 0]. If not negate
the x-values of accelerometer.

• Place the sensor such that device Y axis is pointing downwards, perpendicular to the surface at
which sensor is kept. Accelerometer readings should read approximately [0 9.8 0]. If not negate
the y-values of accelerometer.

• Place the sensor such that device Z axis is pointing downwards, perpendicular to the surface at
which sensor is kept. Accelerometer readings should read approximately [0 0 9.8]. If not negate
the z-values of accelerometer.

b. Gyroscope

Rotate the sensor along each axis and capture the readings. Use the right hand screw rule to correct
the polarity of rotation.

The above method is used to set the axis of the sensor in this example.

Tuning Filter Parameters

The algorithms used in this example, when properly tuned, enable estimation of orientation and are
robust against environmental noise sources. You must consider the situations in which the sensors
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are used and tune the filters accordingly. Refer Tuning Filter Parameters for more details related to
tuning filter parameters.

The example demonstrates three algorithms to determine orientation, namely ahrsfilter,
imufilter, and ecompass. Refer Determine Orientation Using Inertial Sensors for more details
related to inertial fusion algorithms.

Accelerometer-Gyroscope-Magnetometer Fusion

An attitude and heading reference system (AHRS) consist of a 9-axis system that uses an
accelerometer, gyroscope, and magnetometer to compute orientation of the device. The ahrsfilter
produces a smoothly changing estimate of orientation of the device, while correctly estimating the
north direction. The ahrsfilter has the ability to remove gyroscope bias and can also detect and
reject mild magnetic jamming.

The following code snippets use ahrsfilter system object to determine orientation of the sensor
and creates a figure which gets updated as you move the sensor. The sensor has to be stationary,
before the start of this example.

% GyroscopeNoise and AccelerometerNoise is determined from datasheet.
GyroscopeNoiseMPU9250 = 3.0462e-06; % GyroscopeNoise (variance value) in units of rad/s
AccelerometerNoiseMPU9250 = 0.0061; % AccelerometerNoise(variance value)in units of m/s^2
viewer = HelperOrientationViewer('Title',{'AHRS Filter'});
FUSE = ahrsfilter('SampleRate',imu.SampleRate, 'GyroscopeNoise',GyroscopeNoiseMPU9250,'AccelerometerNoise',AccelerometerNoiseMPU9250);
stopTimer = 100;

While the below code is getting executed, slowly move the sensor and check if the motion in the
figure matches the motion of the sensor.

% Use ahrsfilter to estimate orientation and update the viewer as the
% sensor moves for time specified by stopTimer
displayMessage(['This section uses AHRS filter to determine orientation of the sensor by collecting live sensor data from the \slmpu9250 \rm' ...
    'system object. Move the sensor to visualize orientation of the sensor in the figure window. Keep the sensor stationery before you' ...
    'click OK'],...
    'Estimate Orientation using AHRS filter and MPU-9250')
tic;
while(toc < stopTimer)
    [accel,gyro,mag] = readSensorDataMPU9250(imu);
    rotators = FUSE(accel,gyro,mag);
    for j = numel(rotators)
        viewer(rotators(j));
    end
end

When the device X axis of sensor is pointing to north, the device Y-axis is pointing to east and device
Z-axis is pointing down.
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When the device X axis of sensor is pointing to north, device Y-axis is pointing to west and device Z-
axis is pointing upwards.

 Estimating Orientation Using Inertial Sensor Fusion and MPU-9250

1-105



Accelerometer-Gyroscope Fusion

The imufilter system object fuses accelerometer and gyroscope data using an internal error-state
Kalman filter. The filter is capable of removing the gyroscope bias noise, which drifts over time. The
filter does not process magnetometer data, so it does not correctly estimate the direction of north.
The algorithm assumes the initial position of the sensor is in such a way that device X-axis of the
sensor is pointing towards magnetic north, the device Y-axis of the sensor is pointing to east and the
device Z-axis of the sensor is pointing downwards. The sensor must be stationary, before the start of
this example.

The following code snippets use imufilter object to determine orientation of the sensor and creates
a figure which gets updated as you move the sensor.

displayMessage(['This section uses  IMU filter to determine orientation of the sensor by collecting live sensor data from the \slmpu9250 \rm' ...
    'system object. Move the sensor to visualize orientation of the sensor in the figure window. Keep the sensor stationery before you'...
    'click OK'],...
    'Estimate Orientation using IMU filter and MPU-9250.')
% GyroscopeNoise and AccelerometerNoise is determined from datasheet.
GyroscopeNoiseMPU9250 = 3.0462e-06; % GyroscopeNoise (variance) in units of rad/s
AccelerometerNoiseMPU9250 = 0.0061; % AccelerometerNoise (variance) in units of m/s^2
viewer = HelperOrientationViewer('Title',{'IMU Filter'});
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FUSE = imufilter('SampleRate',imu.SampleRate, 'GyroscopeNoise',GyroscopeNoiseMPU9250,'AccelerometerNoise', AccelerometerNoiseMPU9250);
stopTimer=100;

While the below code is getting executed, slowly move the sensor and check if the motion in the
figure matches the motion of the sensor.

% Use imufilter to estimate orientation and update the viewer as the
% sensor moves for time specified by stopTimer
tic;
while(toc < stopTimer)
    [accel,gyro] = readSensorDataMPU9250(imu);
    rotators = FUSE(accel,gyro);
    for j = numel(rotators)
        viewer(rotators(j));
    end
end

The imufilter algorithm can also be used with MPU6050 as well, since it does not require
magnetometer values.

When the device X axis of sensor is pointing to north, device Z-axis is pointing downwards and device
Y-axis is pointing to east.
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When the device X axis of sensor is pointing upwards, device Y-axis is points to west and device Z-axis
points to south.

Accelerometer-Magnetometer Fusion

The ecompass system object fuses the accelerometer and magnetometer data. The Ecompass
algorithm is a memoryless algorithm that requires no parameter tuning but is highly susceptible to
sensor noise. You could use spherical linear interpolation (SLERP) to lowpass filter a noisy trajectory.
Refer Lowpass Filter Orientation using Quaternion SLERP example for more details

displayMessage(['This section uses \slecompass \rmfunction to determine orientation of the sensor by collecting live sensor data from the \slmpu9250 ' ...
    '\rmsystem object. Move the sensor to visualize orientation of the sensor in the figure window. Keep the sensor stationery before you click OK'],...
    'Estimate Orientation using Ecompass algorithm.')
tic;
viewer = HelperOrientationViewer('Title',{'Ecompass Algorithm'});
stopTimer = 100;
tic;
% Use ecompass algorithm to estimate orientation and update the viewer as the
% sensor moves for time specified by stopTimer.
while(toc < stopTimer)
    [accel,gyro,mag] = readSensorDataMPU9250(imu);
    rotators = ecompass(accel,mag);
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    for j = numel(rotators)
        viewer(rotators(j));
    end
end

Clean Up

When the connection is no longer needed, release and clear the objects

release(imu);
delete(imu);
clear;

Things to try

You can try this example with other sensors such as InvenSense MPU-6050 and STMicroelectronics
LSM9DS1. Note that the MPU-6050 sensor can be used only with the imufilter system object.
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Rotations, Orientation, and Quaternions
This example reviews concepts in three-dimensional rotations and how quaternions are used to
describe orientation and rotations. Quaternions are a skew field of hypercomplex numbers. They have
found applications in aerospace, computer graphics, and virtual reality. In MATLAB®, quaternion
mathematics can be represented by manipulating the quaternion class.

The HelperDrawRotation class is used to illustrate several portions of this example.

dr = HelperDrawRotation;

Rotations in Three Dimensions

All rotations in 3-D can be defined by an axis of rotation and an angle of rotation about that axis.
Consider the 3-D image of a teapot in the leftmost plot. The teapot is rotated by 45 degrees around
the Z-axis in the second plot. A more complex rotation of 15 degrees around the axis [1 0 1] is shown
in the third plot. Quaternions encapsulate the axis and angle of rotation and have an algebra for
manipulating these rotations. The quaternion class, and this example, use the "right-hand rule"
convention to define rotations. That is, positive rotations are clockwise around the axis of rotation
when viewed from the origin.

dr.drawTeapotRotations;

Point Rotation

The vertices of the teapot were rotated about the axis of rotation in the reference frame. Consider a
point (0.7, 0.5) rotated 30 degrees about the Z-axis.

figure;
dr.draw2DPointRotation(gca);
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Frame Rotation

Frame rotation is, in some sense, the opposite of point rotation. In frame rotation, the points of the
object stay fixed, but the frame of reference is rotated. Again, consider the point (0.7, 0.5). Now the
reference frame is rotated by 30 degrees around the Z-axis. Note that while the point (0.7, 0.5) stays
fixed, it has different coordinates in the new, rotated frame of reference.

figure;
dr.draw2DFrameRotation(gca);
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Orientation

Orientation refers to the angular displacement of an object relative to a frame of reference. Typically,
orientation is described by the rotation that causes this angular displacement from a starting
orientation. In this example, orientation is defined as the rotation that takes a quantity in a parent
reference frame to a child reference frame. Orientation is usually given as a quaternion, rotation
matrix, set of Euler angles, or rotation vector. It is useful to think about orientation as a frame
rotation: the child reference frame is rotated relative to the parent frame.

Consider an example where the child reference frame is rotated 30 degrees around the vector [1/3
2/3 2/3].

figure;
dr.draw3DOrientation(gca, [1/3 2/3 2/3], 30);
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Quaternions

Quaternions are numbers of the form

where

and  and  are real numbers. In the rest of this example, the four numbers  and  are
referred to as the parts of the quaternion.

Quaternions for Rotations and Orientation

The axis and the angle of rotation are encapsulated in the quaternion parts. For a unit vector axis of
rotation [ x, y, z], and rotation angle , the quaternion describing this rotation is

Note that to describe a rotation using a quaternion, the quaternion must be a unit quaternion. A unit
quaternion has a norm of 1, where the norm is defined as
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There are a variety of ways to construct a quaternion in MATLAB, for example:

q1 = quaternion(1,2,3,4)

q1 = 

  quaternion

     1 + 2i + 3j + 4k

Arrays of quaternions can be made in the same way:

quaternion([1 10; -1 1], [2 20; -2 2], [3 30; -3 3], [4 40; -4 4])

ans = 

  2x2 quaternion array

      1 +  2i +  3j +  4k     10 + 20i + 30j + 40k
     -1 -  2i -  3j -  4k      1 +  2i +  3j +  4k

Arrays with four columns can also be used to construct quaternions, with each column representing a
quaternion part:

qmgk = quaternion(magic(4))

qmgk = 

  4x1 quaternion array

     16 +  2i +  3j + 13k
      5 + 11i + 10j +  8k
      9 +  7i +  6j + 12k
      4 + 14i + 15j +  1k

Quaternions can be indexed and manipulated just like any other array:

qmgk(3)

ans = 

  quaternion

      9 +  7i +  6j + 12k

reshape(qmgk,2,2)
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ans = 

  2x2 quaternion array

     16 +  2i +  3j + 13k      9 +  7i +  6j + 12k
      5 + 11i + 10j +  8k      4 + 14i + 15j +  1k

[q1; q1]

ans = 

  2x1 quaternion array

     1 + 2i + 3j + 4k
     1 + 2i + 3j + 4k

Quaternion Math

Quaternions have well-defined arithmetic operations. Addition and subtraction are similar to complex
numbers: parts are added/subtracted independently. Multiplication is more complicated because of
the earlier equation:

This means that multiplication of quaternions is not commutative. That is,  for quaternions 
and . However, every quaternion has a multiplicative inverse, so quaternions can be divided. Arrays
of the quaternion class can be added, subtracted, multiplied, and divided in MATLAB.

q = quaternion(1,2,3,4);
p = quaternion(-5,6,-7,8);

Addition

p + q

ans = 

  quaternion

     -4 +  8i -  4j + 12k

Subtraction

p - q

ans = 

  quaternion
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     -6 +  4i - 10j +  4k

Multiplication

p*q

ans = 

  quaternion

    -28 - 56i - 30j + 20k

Multiplication in the reverse order (note the different result)

q*p

ans = 

  quaternion

    -28 + 48i - 14j - 44k

Right division of p by q is equivalent to .

p./q

ans = 

  quaternion

         0.6 +  2.2667i + 0.53333j - 0.13333k

Left division of q by p is equivalent to .

p.\q

ans = 

  quaternion

     0.10345 +  0.2069i +       0j - 0.34483k

The conjugate of a quaternion is formed by negating each of the non-real parts, similar to conjugation
for a complex number:
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conj(p)

ans = 

  quaternion

    -5 - 6i + 7j - 8k

Quaternions can be normalized in MATLAB:

pnormed = normalize(p)

pnormed = 

  quaternion

    -0.37905 + 0.45486i - 0.53067j + 0.60648k

norm(pnormed)

ans =

     1

Point and Frame Rotations with Quaternions

Quaternions can be used to rotate points in a static frame of reference, or to rotate the frame of
reference itself. The rotatepoint function rotates a point  using a quaternion q
through the following equation:

where  is

and  indicates quaternion conjugation. Note the above quaternion multiplication results in a
quaternion with the real part, , equal to 0. The , , and  parts of the result form the rotated point
( , , ).

Consider the example of point rotation from above. The point (0.7, 0.5) was rotated 30 degrees
around the Z-axis. In three dimensions this point has a 0 Z-coordinate. Using the axis-angle
formulation, a quaternion can be constructed using [0 0 1] as the axis of rotation.

ang = deg2rad(30);
q = quaternion(cos(ang/2), 0, 0, sin(ang/2));
pt = [0.7, 0.5, 0];  % Z-coordinate is 0 in the X-Y plane
ptrot = rotatepoint(q, pt)
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ptrot =

    0.3562    0.7830         0

Similarly, the rotateframe function takes a quaternion  and point  to compute

Again the above quaternion multiplication results in a quaternion with 0 real part. The ( , , ) parts
of the result form the coordinate of the point  in the new, rotated reference frame. Using the
quaternion class:

ptframerot = rotateframe(q, pt)

ptframerot =

    0.8562    0.0830         0

A quaternion and its conjugate have opposite effects because of the symmetry in the point and frame
rotation equations. Rotating by the conjugate "undoes" the rotation.

rotateframe(conj(q), ptframerot)

ans =

    0.7000    0.5000         0

Because of the symmetry of the equations, this code performs the same rotation.

rotatepoint(q, ptframerot)

ans =

    0.7000    0.5000         0

Other Rotation Representations

Often rotations and orientations are described using alternate means: Euler angles, rotation matrices,
and/or rotation vectors. All of these interoperate with quaternions in MATLAB.

Euler angles are frequently used because they are easy to interpret. Consider a frame of reference
rotated by 30 degrees around the Z-axis, then 20 degrees around the Y-axis, and then -50 degrees
around the X-axis. Note here, and throughout, the rotations around each axis are intrinsic: each
subsequent rotation is around the newly created set of axes. In other words, the second rotation is
around the "new" Y-axis created by the first rotation, not around the original Y-axis.

figure;
euld = [30 20 -50];
dr.drawEulerRotation(gca, euld);
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To build a quaternion from these Euler angles for the purpose of frame rotation, use the quaternion
constructor. Since the order of rotations is around the Z-axis first, then around the new Y-axis, and
finally around the new X-axis, use the 'ZYX' flag.

qeul = quaternion(deg2rad(euld), 'euler', 'ZYX', 'frame')

qeul = 

  quaternion

      0.84313 -  0.44275i + 0.044296j +  0.30189k

The 'euler' flag indicates that the first argument is in radians. If the argument is in degrees, use
the 'eulerd' flag.

qeuld = quaternion(euld, 'eulerd', 'ZYX', 'frame')

qeuld = 

  quaternion

      0.84313 -  0.44275i + 0.044296j +  0.30189k
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To convert back to Euler angles:

rad2deg(euler(qeul, 'ZYX', 'frame'))

ans =

   30.0000   20.0000  -50.0000

Equivalently, the eulerd method can be used.

eulerd(qeul, 'ZYX', 'frame')

ans =

   30.0000   20.0000  -50.0000

Alternatively, this same rotation can be represented as a rotation matrix:

rmat = rotmat(qeul, 'frame')

rmat =

    0.8138    0.4698   -0.3420
   -0.5483    0.4257   -0.7198
   -0.1926    0.7733    0.6040

The conversion back to quaternions is similar:

quaternion(rmat, 'rotmat', 'frame')

ans = 

  quaternion

      0.84313 -  0.44275i + 0.044296j +  0.30189k

Just as a quaternion can be used for either point or frame rotation, it can be converted to a rotation
matrix (or set of Euler angles) specifically for point or frame rotation. The rotation matrix for point
rotation is the transpose of the matrix for frame rotation. To convert between rotation
representations, it is necessary to specify 'point' or 'frame'.

The rotation matrix for the point rotation section of this example is:

rotmatPoint = rotmat(q, 'point')

rotmatPoint =

    0.8660   -0.5000         0
    0.5000    0.8660         0

1 Navigation Featured Examples

1-120



         0         0    1.0000

To find the location of the rotated point, right-multiply rotmatPoint by the transposed array pt.

rotmatPoint * (pt')

ans =

    0.3562
    0.7830
         0

The rotation matrix for the frame rotation section of this example is:

rotmatFrame = rotmat(q, 'frame')

rotmatFrame =

    0.8660    0.5000         0
   -0.5000    0.8660         0
         0         0    1.0000

To find the location of the point in the rotated reference frame, right-multiply rotmatFrame by the
transposed array pt.

rotmatFrame * (pt')

ans =

    0.8562
    0.0830
         0

A rotation vector is an alternate, compact rotation encapsulation. A rotation vector is simply a three-
element vector that represents the unit length axis of rotation scaled-up by the angle of rotation in
radians. There is no frame-ness or point-ness associated with a rotation vector. To convert to a
rotation vector:

rv = rotvec(qeul)

rv =

   -0.9349    0.0935    0.6375

To convert to a quaternion:

quaternion(rv, 'rotvec')

ans = 
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  quaternion

      0.84313 -  0.44275i + 0.044296j +  0.30189k

Distance

One advantage of quaternions over Euler angles is the lack of discontinuities. Euler angles have
discontinuities that vary depending on the convention being used. The dist function compares the
effect of rotation by two different quaternions. The result is a number in the range of 0 to pi.
Consider two quaternions constructed from Euler angles:

eul1 = [0, 10, 0];
eul2 = [0, 15, 0];
qdist1 = quaternion(deg2rad(eul1), 'euler', 'ZYX', 'frame');
qdist2 = quaternion(deg2rad(eul2), 'euler', 'ZYX', 'frame');

Subtracting the Euler angles, you can see there is no rotation around the Z-axis or X-axis.

eul2 - eul1

ans =

     0     5     0

The difference between these two rotations is five degrees around the Y-axis. The dist shows the
difference as well.

rad2deg(dist(qdist1, qdist2))

ans =

    5.0000

For Euler angles such as eul1 and eul2, computing angular distance is trivial. A more complex
example, which spans an Euler angle discontinuity, is:

eul3 = [0, 89, 0];
eul4 = [180, 89, 180];
qdist3 = quaternion(deg2rad(eul3), 'euler', 'ZYX', 'frame');
qdist4 = quaternion(deg2rad(eul4), 'euler', 'ZYX', 'frame');

Though eul3 and eul4 represent nearly the same orientation, simple Euler angle subtraction gives
the impression that these two orientations are very far apart.

euldiff = eul4 - eul3

euldiff =

   180     0   180
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Using the dist function on the quaternions shows that there is only a two-degree difference in these
rotations:

euldist = rad2deg(dist(qdist3, qdist4))

euldist =

    2.0000

A quaternion and its negative represent the same rotation. This is not obvious from subtracting
quaternions, but the dist function makes it clear.

qpos = quaternion(-cos(pi/4), 0 ,0, sin(pi/4))

qpos = 

  quaternion

    -0.70711 +       0i +       0j + 0.70711k

qneg = -qpos

qneg = 

  quaternion

     0.70711 +       0i +       0j - 0.70711k

qdiff = qpos - qneg

qdiff = 

  quaternion

    -1.4142 +      0i +      0j + 1.4142k

dist(qpos, qneg)

ans =

     0

Supported Functions

The quaternion class lets you effectively describe rotations and orientations in MATLAB. The full
list of quaternion-supported functions can be found with the methods function:
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methods('quaternion')

Methods for class quaternion:

angvel              ismatrix            prod                
cat                 isnan               quaternion          
classUnderlying     isrow               rdivide             
compact             isscalar            reshape             
conj                isvector            rotateframe         
ctranspose          ldivide             rotatepoint         
disp                length              rotmat              
dist                log                 rotvec              
double              meanrot             rotvecd             
eq                  minus               single              
euler               mtimes              size                
eulerd              ndims               slerp               
exp                 ne                  times               
horzcat             norm                transpose           
iscolumn            normalize           uminus              
isempty             numel               validateattributes  
isequal             parts               vertcat             
isequaln            permute             
isfinite            plus                
isinf               power               

Static methods:

ones                zeros               
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Lowpass Filter Orientation Using Quaternion SLERP
This example shows how to use spherical linear interpolation (SLERP) to create sequences of
quaternions and lowpass filter noisy trajectories. SLERP is a commonly used computer graphics
technique for creating animations of a rotating object.

SLERP Overview

Consider a pair of quaternions  and . Spherical linear interpolation allows you to create a
sequence of quaternions that vary smoothly between  and  with a constant angular velocity.
SLERP uses an interpolation parameter h that can vary between 0 and 1 and determines how close
the output quaternion is to either  or .

The original formulation of quaternion SLERP was given by Ken Shoemake [ 1] as:

An alternate formulation with sinusoids (used in the slerp function implementation) is:

where  is the dot product of the quaternion parts. Note that .

SLERP vs Linear Interpolation of Quaternion Parts

Consider the following example. Build two quaternions from Euler angles.

q0 = quaternion([-80 10 0], 'eulerd', 'ZYX', 'frame');
q1 = quaternion([80 70 70], 'eulerd', 'ZYX', 'frame');

To find a quaternion 30 percent of the way from q0 to q1, specify the slerp parameter as 0.3.

p30 = slerp(q0, q1, 0.3);

To view the interpolated quaternion's Euler angle representation, use the eulerd function.

eulerd(p30, 'ZYX', 'frame')

ans =

  -56.6792   33.2464   -9.6740

To create a smooth trajectory between q0 and q1, specify the slerp interpolation parameter as a
vector of evenly spaced numbers between 0 and 1.

dt = 0.01;
h = (0:dt:1).';
trajSlerped = slerp(q0, q1, h);

Compare the results of the SLERP algorithm with a trajectory between q0 and q1, using simple linear
interpolation (LERP) of each quaternion part.

partsLinInterp = interp1( [0;1], compact([q0;q1]), h, 'linear');
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Note that linear interpolation does not give unit quaternions, so they must be normalized.

trajLerped = normalize(quaternion(partsLinInterp));

Compute the angular velocities from each approach.

avSlerp = helperQuat2AV(trajSlerped, dt);
avLerp = helperQuat2AV(trajLerped, dt);

Plot both sets of angular velocities. Notice that the angular velocity for SLERP is constant, but it
varies for linear interpolation.

sp = HelperSlerpPlotting;
sp.plotAngularVelocities(avSlerp, avLerp);

SLERP produces a smooth rotation at a constant rate.

Lowpass Filtering with SLERP

SLERP can also be used to make more complex functions. Here, SLERP is used to lowpass filter a
noisy trajectory.

Rotational noise can be constructed by forming a quaternion from a noisy rotation vector.

rcurr = rng(1);
sigma = 1e-1;
noiserv = sigma .* ( rand(numel(h), 3) - 0.5);
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qnoise = quaternion(noiserv, 'rotvec');
rng(rcurr);

To corrupt the trajectory trajSlerped with noise, incrementally rotate the trajectory with the noise
vector qnoise.

trajNoisy = trajSlerped .* qnoise;

You can smooth real-valued signals using a single pole filter of the form:

This formula essentially says that the new filter state  should be moved toward the current input 
by a step size that is proportional to the distance between the current input and the current filter
state .

The spirit of this approach informs how a quaternion sequence can be lowpass filtered. To do this,
both the dist and slerp functions are used.

The dist function returns a measurement in radians of the difference in rotation applied by two
quaternions. The range of the dist function is the half-open interval [0, pi).

The slerp function is used to steer the filter state towards the current input. It is steered more
towards the input when the difference between the input and current filter state has a large dist,
and less toward the input when dist gives a small value. The interpolation parameter to slerp is in
the closed-interval [0,1], so the output of dist must be re-normalized to this range. However, the full
range of [0,1] for the interpolation parameter gives poor performance, so it is limited to a smaller
range hrange centered at hbias.

hrange = 0.4;
hbias = 0.4;

Limit low and high to the interval [0, 1].

low  = max(min(hbias - (hrange./2), 1), 0);
high = max(min(hbias + (hrange./2), 1), 0);
hrangeLimited = high - low;

Initialize the filter and preallocate outputs.

y = trajNoisy(1); % initial filter state
qout = zeros(size(y), 'like', y); % preallocate filter output
qout(1) = y;

Filter the noisy trajectory, sample-by-sample.

for ii=2:numel(trajNoisy)
    x = trajNoisy(ii);
    d = dist(y, x);

    % Renormalize dist output to the range [low, high]
    hlpf = (d./pi).*hrangeLimited + low;
    y = slerp(y,x,hlpf);
    qout(ii) = y;
end

f = figure;
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sp.plotEulerd(f, trajNoisy, 'o');
sp.plotEulerd(f, trajSlerped, 'k-.', 'LineWidth', 2);
sp.plotEulerd(f, qout, '-', 'LineWidth', 2);
sp.addAnnotations(f, hrange, hbias);

Conclusion

SLERP can be used for creating both short trajectories between two orientations and for smoothing
or lowpass filtering. It has found widespread use in a variety of industries.

References

1 Shoemake, Ken. "Animating Rotation with Quaternion Curves." ACM SIGRAPH Computer
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Introduction to Simulating IMU Measurements
This example shows how to simulate inertial measurement unit (IMU) measurements using the
imuSensor (Sensor Fusion and Tracking Toolbox) System object. An IMU can include a combination
of individual sensors, including a gyroscope, an accelerometer, and a magnetometer. You can specify
properties of the individual sensors using gyroparams (Sensor Fusion and Tracking Toolbox),
accelparams (Sensor Fusion and Tracking Toolbox), and magparams (Sensor Fusion and Tracking
Toolbox), respectively.

In the following plots, unless otherwise noted, only the x-axis measurements are shown.

Default Parameters

The default parameters for the gyroscope model simulate an ideal signal. Given a sinusoidal input,
the gyroscope output should match exactly.

params = gyroparams

% Generate N samples at a sampling rate of Fs with a sinusoidal frequency
% of Fc.
N = 1000;
Fs = 100;
Fc = 0.25;

t = (0:(1/Fs):((N-1)/Fs)).';
acc = zeros(N, 3);
angvel = zeros(N, 3);
angvel(:,1) = sin(2*pi*Fc*t);

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);
[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Ideal Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')

params = 

  gyroparams with properties:

    MeasurementRange: Inf        rad/s      
          Resolution: 0          (rad/s)/LSB
        ConstantBias: [0 0 0]    rad/s      
    AxesMisalignment: [0 0 0]    %          

       NoiseDensity: [0 0 0]    (rad/s)/√Hz
    BiasInstability: [0 0 0]    rad/s      
         RandomWalk: [0 0 0]    (rad/s)*√Hz

           TemperatureBias: [0 0 0]    (rad/s)/°C    
    TemperatureScaleFactor: [0 0 0]    %/°C          
          AccelerationBias: [0 0 0]    (rad/s)/(m/s²)
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Hardware Parameter Tuning

The following parameters model hardware limitations or defects. Some can be corrected through
calibration.

MeasurementRange determines the maximum absolute value reported by the gyroscope. Larger
absolute values are saturated. The effect is shown by setting the measurement range to a value
smaller than the amplitude of the sinusoidal ground-truth angular velocity.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);
imu.Gyroscope.MeasurementRange = 0.5; % rad/s

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Saturated Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')
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Resolution affects the step size of the digital measurements. Use this parameter to model the
quantization effects from the analog-to-digital converter (ADC). The effect is shown by increasing the
parameter to a much larger value than is typical.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);
imu.Gyroscope.Resolution = 0.5; % (rad/s)/LSB

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Quantized Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')

 Introduction to Simulating IMU Measurements

1-131



AxesMisalignment is the amount of skew in the sensor axes. This skew normally occurs when the
sensor is mounted to the PCB and can be corrected through calibration. The effect is shown by
skewing the x-axis slightly and plotting both the x-axis and y-axis.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);
imu.Gyroscope.AxesMisalignment = [2 0 0]; % percent

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1:2), '--', t, gyroData(:,1:2))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Misaligned Gyroscope Data')
legend('x (ground truth)', 'y (ground truth)', ...
    'x (gyroscope)', 'y (gyroscope)')
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ConstantBias occurs in sensor measurements due to hardware defects. Since this bias is not
caused by environmental factors, such as temperature, it can be corrected through calibration.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);
imu.Gyroscope.ConstantBias = [0.4 0 0]; % rad/s

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Biased Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')
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Random Noise Parameter Tuning

The following parameters model random noise in sensor measurements. More information on these
parameters can be found in the “Inertial Sensor Noise Analysis Using Allan Variance” (Sensor Fusion
and Tracking Toolbox) example.

NoiseDensity is the amount of white noise in the sensor measurement. It is sometimes called angle
random walk for gyroscopes or velocity random walk for accelerometers.

rng('default')

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);
imu.Gyroscope.NoiseDensity = 1.25e-2; % (rad/s)/sqrt(Hz)

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('White Noise Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')
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BiasInstability is the amount of pink or flicker noise in the sensor measurement.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);
imu.Gyroscope.BiasInstability = 2.0e-2; % rad/s

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Bias Instability Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')

 Introduction to Simulating IMU Measurements

1-135



RandomWalk is the amount of Brownian noise in the sensor measurement. It is sometimes called rate
random walk for gyroscopes or acceleration random walk for accelerometers.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);
imu.Gyroscope.RandomWalk = 9.1e-2; % (rad/s)*sqrt(Hz)

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Random Walk Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')
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Environmental Parameter Tuning

The following parameters model noise that arises from changes to the environment of the sensor.

TemperatureBias is the bias added to sensor measurements due to temperature difference from
the default operating temperature. Most sensor datasheets list the default operating temperature as
25 degrees Celsius. This bias is shown by setting the parameter to a non-zero value and setting the
operating temperature to a value above 25 degrees Celsius.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);
imu.Gyroscope.TemperatureBias = 0.06; % (rad/s)/(degrees C)
imu.Temperature = 35;

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Temperature-Biased Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')
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TemperatureScaleFactor is the error in the sensor scale factor due to changes in the operating
temperature. This causes errors in the scaling of the measurement; in other words smaller ideal
values have less error than larger values. This error is shown by linearly increasing the temperature.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);
imu.Gyroscope.TemperatureScaleFactor = 3.2; % %/(degrees C)

standardTemperature = 25; % degrees C
temperatureSlope = 2; % (degrees C)/s

temperature = temperatureSlope*t + standardTemperature;

gyroData = zeros(N, 3);
for i = 1:N
    imu.Temperature = temperature(i);
    [~, gyroData(i,:)] = imu(acc(i,:), angvel(i,:));
end

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Temperature-Scaled Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')
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AccelerationBias is the bias added to the gyroscope measurement due to linear accelerations.
This parameter is specific to the gyroscope. This bias is shown by setting the parameter to a non-zero
value and using a non-zero input acceleration.

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);
imu.Gyroscope.AccelerationBias = 0.3; % (rad/s)/(m/s^2)

acc(:,1) = 1;

[~, gyroData] = imu(acc, angvel);

figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Acceleration-Biased Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')
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Logged Sensor Data Alignment for Orientation Estimation
This example shows how to align and preprocess logged sensor data. This allows the fusion filters to
perform orientation estimation as expected. The logged data was collected from an accelerometer
and a gyroscope mounted on a ground vehicle.

Load Logged Sensor Data

Load logged inertial measurement unit (IMU) data and extract individual sensor data and
timestamps.

load('imuData', 'imuTT')

time = imuTT.Time;
accel = imuTT.LinearAcceleration;
gyro = imuTT.AngularVelocity;
orient = imuTT.Orientation;

Inspect the Gyroscope Data

From the range of angular velocity readings, the logged gyroscope data is in radians per second
instead of degrees per second. Also, the larger z-axis values and small x- and y-axis values indicate
that the device rotated around the z-axis only.

figure
plot(time, gyro)
title('Gyroscope')
ylabel('rad/s')
legend('x-axis', 'y-axis', 'z-axis')
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Inspect the Accelerometer Data

Since the z-axis reading of the accelerometer is around 10, the logged data is in meters per second
squared instead of g's.

figure
plot(time, accel)
title('Accelerometer')
ylabel('m/s^2')
legend('x-axis', 'y-axis', 'z-axis')
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Inspect the Orientation Data

Convert the logged orientation quaternion data to Euler angles in degrees. The z-axis is changing
while the x- and y-axis are relatively fixed. This matches the gyroscope and accelerometer readings.
Therefore, no axis negating or rotating is required. However, the z-axis Euler angle is decreasing
while the gyroscope reading is positive. This means that the logged orientation quaternion is
expected to be applied as a point rotation operator ( ). In order to have the orientation
quaternion match the orientations filters, such as imufilter, the quaternion needs to be applied as
a frame rotation operator ( ). This can be done by conjugating the logged orientation
quaternion.

figure
plot(time, eulerd(orient, 'ZYX', 'frame'))
title('Euler Angles')
ylabel('\circ') % Degrees symbol.
legend('z-axis', 'y-axis', 'x-axis')
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Find the Sampling Rate of the Logged Data

An estimate of the sampling rate can be obtained by taking the mean of the difference between the
timestamps. Notice that there are some variances in the time differences. Since the variances are
small for this logged data, the mean of the time differences can be used. Alternatively, the sensor data
could be interpolated using the timestamps and equally spaced timestamps as query points.

deltaTimes = seconds(diff(time));
sampleRate = 1/mean(deltaTimes);

figure
plot([deltaTimes, repmat(mean(deltaTimes), numel(deltaTimes), 1)])
title('Time Differences')
ylabel('s')
legend('differences', 'mean')
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Compare the Transformed Logged Quaternion to the imufilter Quaternion

Conjugate the logged orientation quaternion before comparing it to the estimated orientation
quaternion from imufilter. From the plot below, there is still a constant offset in the z-axis Euler
angle estimate. This is because the imufilter assumes the initial orientation of the device is aligned
with the navigation frame.

loggedOrient = conj(orient);

filt = imufilter('SampleRate', sampleRate);
estOrient = filt(accel, gyro);

figure
subplot(2, 1, 1)
plot(time, eulerd(loggedOrient, 'ZYX', 'frame'), '--')
title('Logged Euler Angles')
ylabel('\circ') % Degrees symbol.
legend('z-axis', 'y-axis', 'x-axis')
subplot(2, 1, 2)
plot(time, eulerd(estOrient, 'ZYX', 'frame'))
title('|imufilter| Euler Angles')
ylabel('\circ') % Degrees symbol.
legend('z-axis', 'y-axis', 'x-axis')
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Align the Logged Orientation and imufilter Orientation

Align the imufilter orientation quaternion with the logged orientation quaternion by applying a
constant bias using the first logged orientation quaternion. For quaternions, a constant rotation bias
can be applied by pre-multiplying frame rotations or post-multiplying point rotations. Since
imufilter reports quaternions as frame rotation operators, the estimated orientation quaternions
are pre-multiplied by the first logged orientation quaternion.

alignedEstOrient = loggedOrient(1) .* estOrient;

figure
subplot(2, 1, 1)
plot(time, eulerd(loggedOrient, 'ZYX', 'frame'), '--')
title('Logged Euler Angles')
ylabel('\circ') % Degrees symbol.
legend('z-axis', 'y-axis', 'x-axis')
subplot(2, 1, 2)
plot(time, eulerd(alignedEstOrient, 'ZYX', 'frame'))
title('Aligned |imufilter| Euler Angles')
ylabel('\circ') % Degrees symbol.
legend('z-axis', 'y-axis', 'x-axis')
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Conclusion

For the MAT-file in this example, you checked the following aspects for alignment:

• Units for accelerometer and gyroscope.
• Axes alignments of accelerometer and gyroscope.
• Orientation quaternion rotation operator (point:  or frame: )

Different unit conversions, axes alignments, and quaternion transformations may need to be applied
depending on the format of the logged data.
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Generate Off-Centered IMU Readings
This example shows how to generate inertial measurement unit (IMU) readings from a sensor that is
mounted on a ground vehicle. Depending on the location of the sensor, the IMU accelerations are
different.

Create Trajectory

Specify the waypoint trajectory of a vehicle and compute the vehicle poses using lookupPose.

% Sampling rate.
Fs = 100;

% Waypoints and times of arrival.
waypoints = [1 1 1; 3 1 1; 3 0 0; 0 0 0];
t = [1; 10; 20; 30];

% Create trajectory and compute pose.
traj = waypointTrajectory(waypoints, t, "SampleRate", Fs);
[posVeh, orientVeh, velVeh, accVeh, angvelVeh] = lookupPose(traj, ...
    t(1):1/Fs:t(end));

Create Sensor and Define Offset

Create two 9-axis imuSensor objects composed of accelerometer, gyroscope, and magnetometer
sensors. One imuSensor object generates readings of an IMU mounted at the vehicle's origin and
the other one generates readings of an IMU mounted at the driver's seat. Next, specify the offset
between the vehicle origin and the IMU mounted at the driver's seat. Call helperPlotIMU to
visualize the locations of the sensors.

% IMU at vehicle origin.
imu = imuSensor("accel-gyro-mag", "SampleRate", Fs);

% IMU at driver's seat.
mountedIMU = imuSensor("accel-gyro-mag", "SampleRate", Fs);

% Position and orientation offset of the vehicle and the mounted IMU.
posVeh2IMU = [2.4 0.5 0.4];
orientVeh2IMU = quaternion([0 0 90], "eulerd", "ZYX", "frame");

% Visualization.
helperPlotIMU(posVeh(1,:), orientVeh(1,:), posVeh2IMU, orientVeh2IMU);
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Calculate IMU Trajectory Using Vehicle Trajectory

Compute the ground truth trajectory of the IMU mounted at the driver's seat using the
transformMotion function. This function uses the position and orientation offsets and the vehicle
trajectory to compute the IMU trajectory.

[posIMU, orientIMU, velIMU, accIMU, angvelIMU] = transformMotion( ...
    posVeh2IMU, orientVeh2IMU, ...
    posVeh, orientVeh, velVeh, accVeh, angvelVeh);

Generate Sensor Readings

Generate the IMU readings for both the IMU mounted at the vehicle origin and the IMU mounted at
the driver's seat.

% IMU at vehicle origin.
[accel, gyro, mag] = imu(accVeh, angvelVeh, orientVeh);

% IMU at driver's seat.
[accelMounted, gyroMounted, magMounted] = mountedIMU( ...
    accIMU, angvelIMU, orientIMU);

Compare Accelerometer Readings

Compare the accelerometer readings of the two IMUs. Notice that the x-axis acceleration is different
because of the off-center location.
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figure('Name', 'Accelerometer Comparison')
subplot(3, 1, 1)
plot([accel(:,1), accelMounted(:,1)])
legend('Aligned with Vehicle', 'Off-centered')
title('Accelerometer')
ylabel('x-axis (m/s^2)')
subplot(3, 1, 2)
plot([accel(:,2), accelMounted(:,2)])
ylabel('y-axis (m/s^2)')
subplot(3, 1, 3)
plot([accel(:,3), accelMounted(:,3)])
ylabel('z-axis (m/s^2)')

Compare Gyroscope Readings

Compare the gyroscope readings of the two IMUs.

figure('Name', 'Gyroscope Comparison')
subplot(3, 1, 1)
plot([gyro(:,1), gyroMounted(:,1)])
ylim([-0.22 0.1])
legend('Aligned with Vehicle', 'Off-centered')
title('Gyroscope')
ylabel('x-axis (rad/s)')
subplot(3, 1, 2)
plot([gyro(:,2), gyroMounted(:,2)])
ylabel('y-axis (rad/s)')
subplot(3, 1, 3)
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plot([gyro(:,3), gyroMounted(:,3)])
ylabel('z-axis (rad/s)')

Compare Magnetometer Readings

Compare the magnetometer readings of the two IMUs.

figure('Name', 'Magnetometer Comparison')
subplot(3, 1, 1)
plot([mag(:,1), magMounted(:,1)])
legend('Aligned with Vehicle', 'Off-centered')
title('Magnetometer')
ylabel('x-axis (\muT)')
subplot(3, 1, 2)
plot([mag(:,2), magMounted(:,2)])
ylabel('y-axis (\muT)')
subplot(3, 1, 3)
plot([mag(:,3), magMounted(:,3)])
ylabel('z-axis (\muT)')
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Estimate Robot Pose with Scan Matching
This example demonstrates how to match two laser scans using the Normal Distributions Transform
(NDT) algorithm [1]. The goal of scan matching is to find the relative pose (or transform) between the
two robot positions where the scans were taken. The scans can be aligned based on the shapes of
their overlapping features.

To estimate this pose, NDT subdivides the laser scan into 2D cells and each cell is assigned a
corresponding normal distribution. The distribution represents the probability of measuring a point in
that cell. Once the probability density is calculated, an optimization method finds the relative pose
between the current laser scan and the reference laser scan. To speed up the convergence of the
method, an initial guess of the pose can be provided. Typically, robot odometry is used to supply the
initial estimate.

If you apply scan matching to a sequence of scans, you can use it to recover a rough map of the
environment that the robot traverses. Scan matching also plays a crucial role in other applications,
such as position tracking and Simultaneous Localization and Mapping (SLAM).

Load Laser Scan Data from File

load lidarScans.mat

The laser scan data was collected by a mobile robot in an indoor environment. An approximate
floorplan of the area, along with the robot's path through the space, is shown in the following image.

Plot Two Laser Scans

Pick two laser scans to scan match from lidarScans. They should share common features by being
close together in the sequence.

referenceScan = lidarScans(180);
currentScan = lidarScans(202);
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Display the two scans. Notice there are translational and rotational offsets, but some features still
match.

currScanCart = currentScan.Cartesian;
refScanCart = referenceScan.Cartesian;
figure
plot(refScanCart(:,1),refScanCart(:,2),'k.');
hold on
plot(currScanCart(:,1),currScanCart(:,2),'r.');
legend('Reference laser scan','Current laser scan','Location','NorthWest');

Run Scan Matching Algorithm and Display Transformed Scan

Pass these two scans to the scan matching function. matchScans calculates the relative pose of the
current scan with respect to the reference scan.

transform = matchScans(currentScan,referenceScan)

transform = 1×3

    0.5348   -0.0065   -0.0336

To visually verify that the relative pose was calculated correctly, transform the current scan by the
calculated pose using transformScan. This transformed laser scan can be used to visualize the
result.

transScan = transformScan(currentScan,transform);
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Display the reference scan alongside the transformed current laser scan. If the scan matching was
successful, the two scans should be well-aligned.

figure
plot(refScanCart(:,1),refScanCart(:,2),'k.');
hold on
transScanCart = transScan.Cartesian;
plot(transScanCart(:,1),transScanCart(:,2),'r.');
legend('Reference laser scan','Transformed current laser scan','Location','NorthWest');

Build Occupancy Grid Map Using Iterative Scan Matching

If you apply scan matching to a sequence of scans, you can use it to recover a rough map of the
environment. Use the occupancyMap class to build a probabilistic occupancy grid map of the
environment.

Create an occupancy grid object for a 15 meter by 15 meter area. Set the map's origin to be [-7.5
-7.5].

map = occupancyMap(15,15,20);
map.GridLocationInWorld = [-7.5 -7.5]

map = 
  occupancyMap with properties:

             XWorldLimits: [-7.5000 7.5000]
             YWorldLimits: [-7.5000 7.5000]
        OccupiedThreshold: 0.6500
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            FreeThreshold: 0.2000
    ProbabilitySaturation: [0.0010 0.9990]
      GridLocationInWorld: [-7.5000 -7.5000]
                 DataType: 'double'
             DefaultValue: 0.5000
               Resolution: 20
                 GridSize: [300 300]
             XLocalLimits: [0 15]
             YLocalLimits: [0 15]
        GridOriginInLocal: [0 0]
       LocalOriginInWorld: [-7.5000 -7.5000]

Pre-allocate an array to capture the absolute movement of the robot. Initialize the first pose as [0 0
0]. All other poses are relative to the first measured scan.

numScans = numel(lidarScans);
initialPose = [0 0 0];
poseList = zeros(numScans,3);
poseList(1,:) = initialPose;
transform = initialPose;

Create a loop for processing the scans and mapping the area. The laser scans are processed in pairs.
Define the first scan as reference scan and the second scan as current scan. The two scans are then
passed to the scan matching algorithm and the relative pose between the two scans is computed. The
exampleHelperComposeTransform function is used to calculate of the cumulative absolute robot
pose. The scan data along with the absolute robot pose can then be passed into the insertRay
function of the occupancy grid.

% Loop through all the scans and calculate the relative poses between them
for idx = 2:numScans
    % Process the data in pairs.
    referenceScan = lidarScans(idx-1);
    currentScan = lidarScans(idx);
    
    % Run scan matching. Note that the scan angles stay the same and do 
    % not have to be recomputed. To increase accuracy, set the maximum 
    % number of iterations to 500. Use the transform from the last
    % iteration as the initial estimate.
    [transform,stats] = matchScans(currentScan,referenceScan, ...
        'MaxIterations',500,'InitialPose',transform);
    
    % The |Score| in the statistics structure is a good indication of the
    % quality of the scan match. 
    if stats.Score / currentScan.Count < 1.0
        disp(['Low scan match score for index ' num2str(idx) '. Score = ' num2str(stats.Score) '.']);
    end
    
    % Maintain the list of robot poses. 
    absolutePose = exampleHelperComposeTransform(poseList(idx-1,:),transform);
    poseList(idx,:) = absolutePose;
       
    % Integrate the current laser scan into the probabilistic occupancy
    % grid.
    insertRay(map,absolutePose,currentScan,10);

end
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Visualize Map

Visualize the occupancy grid map populated with the laser scans.

figure
show(map);
title('Occupancy grid map built using scan matching results');

Plot the absolute robot poses that were calculated by the scan matching algorithm. This shows the
path that the robot took through the map of the environment.

hold on
plot(poseList(:,1),poseList(:,2),'bo','DisplayName','Estimated robot position');
legend('show','Location','NorthWest')
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Localize TurtleBot Using Monte Carlo Localization
This example demonstrates an application of the Monte Carlo Localization (MCL) algorithm on
TurtleBot® in simulated Gazebo® environment.

Monte Carlo Localization (MCL) is an algorithm to localize a robot using a particle filter. The
algorithm requires a known map and the task is to estimate the pose (position and orientation) of the
robot within the map based on the motion and sensing of the robot. The algorithm starts with an
initial belief of the robot pose's probability distribution, which is represented by particles distributed
according to such belief. These particles are propagated following the robot's motion model each time
the robot's pose changes. Upon receiving new sensor readings, each particle will evaluate its
accuracy by checking how likely it would receive such sensor readings at its current pose. Next the
algorithm will redistribute (resample) particles to bias particles that are more accurate. Keep
iterating these moving, sensing and resampling steps, and all particles should converge to a single
cluster near the true pose of robot if localization is successful.

Adaptive Monte Carlo Localization (AMCL) is the variant of MCL implemented in 
monteCarloLocalization. AMCL dynamically adjusts the number of particles based on KL-
distance [1] to ensure that the particle distribution converge to the true distribution of robot state
based on all past sensor and motion measurements with high probability.

The current MATLAB® AMCL implementation can be applied to any differential drive robot equipped
with a range finder.

The Gazebo TurtleBot simulation must be running for this example to work.

Prerequisites: “Get Started with Gazebo and a Simulated TurtleBot” (ROS Toolbox), “Access the tf
Transformation Tree in ROS” (ROS Toolbox), “Exchange Data with ROS Publishers and Subscribers”
(ROS Toolbox).

Note: Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Connect to the TurtleBot in Gazebo

First, spawn a simulated TurtleBot inside an office environment in a virtual machine by following
steps in the “Get Started with Gazebo and a Simulated TurtleBot” (ROS Toolbox) to launch the
Gazebo Office World from the desktop, as shown below.
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In your MATLAB instance on the host computer, run the following commands to initialize ROS global
node in MATLAB and connect to the ROS master in the virtual machine through its IP address
ipaddress. Replace ipaddress with the IP address of your TurtleBot in virtual machine.

ipaddress = '192.168.2.150';
rosinit(ipaddress,11311);

Initializing global node /matlab_global_node_73841 with NodeURI http://192.168.2.1:53461/

The layout of simulated office environment:
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Load the Map of the Simulation World

Load a binary occupancy grid of the office environment in Gazebo. The map is generated by driving
TurtleBot inside the office environment. The map is constructed using range-bearing readings from
Kinect® and ground truth poses from gazebo/model_states topic.

load officemap.mat
show(map)
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Setup the Laser Sensor Model and TurtleBot Motion Model

TurtleBot can be modeled as a differential drive robot and its motion can be estimated using
odometry data. The Noise property defines the uncertainty in robot's rotational and linear motion.
Increasing the odometryModel.Noise property will allow more spread when propagating particles
using odometry measurements. Refer to odometryMotionModel for property details.

odometryModel = odometryMotionModel;
odometryModel.Noise = [0.2 0.2 0.2 0.2];

The sensor on TurtleBot is a simulated range finder converted from Kinect readings. The likelihood
field method is used to compute the probability of perceiving a set of measurements by comparing
the end points of the range finder measurements to the occupancy map. If the end points match the
occupied points in occupancy map, the probability of perceiving such measurements is high. The
sensor model should be tuned to match the actual sensor property to achieve better test results. The
property SensorLimits defines the minimum and maximum range of sensor readings. The property
Map defines the occupancy map used for computing likelihood field. Please refer to 
likelihoodFieldSensorModel for property details.

rangeFinderModel = likelihoodFieldSensorModel;
rangeFinderModel.SensorLimits = [0.45 8];
rangeFinderModel.Map = map;

Set rangeFinderModel.SensorPose to the coordinate transform of the fixed camera with respect
to the robot base. This is used to transform the laser readings from camera frame to the base frame
of TurtleBot. Please refer to “Access the tf Transformation Tree in ROS” (ROS Toolbox) for details on
coordinate transformations.
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Note that currently SensorModel is only compatible with sensors that are fixed on the robot's frame,
which means the sensor transform is constant.

% Query the Transformation Tree (tf tree) in ROS.
tftree = rostf;
waitForTransform(tftree,'/base_link','/base_scan');
sensorTransform = getTransform(tftree,'/base_link', '/base_scan');

% Get the euler rotation angles.
laserQuat = [sensorTransform.Transform.Rotation.W sensorTransform.Transform.Rotation.X ...
    sensorTransform.Transform.Rotation.Y sensorTransform.Transform.Rotation.Z];
laserRotation = quat2eul(laserQuat, 'ZYX');

% Setup the |SensorPose|, which includes the translation along base_link's
% +X, +Y direction in meters and rotation angle along base_link's +Z axis
% in radians.
rangeFinderModel.SensorPose = ...
    [sensorTransform.Transform.Translation.X sensorTransform.Transform.Translation.Y laserRotation(1)];

Receiving Sensor Measurements and Sending Velocity Commands

Create ROS subscribers for retrieving sensor and odometry measurements from TurtleBot.

laserSub = rossubscriber('/scan');
odomSub = rossubscriber('/odom');

Create ROS publisher for sending out velocity commands to TurtleBot. TurtleBot subscribes to '/
mobile_base/commands/velocity' for velocity commands.

[velPub,velMsg] = ...
    rospublisher('/cmd_vel','geometry_msgs/Twist');

Initialize AMCL Object

Instantiate an AMCL object amcl. See monteCarloLocalization for more information on the
class.

amcl = monteCarloLocalization;
amcl.UseLidarScan = true;

Assign the MotionModel and SensorModel properties in the amcl object.

amcl.MotionModel = odometryModel;
amcl.SensorModel = rangeFinderModel;

The particle filter only updates the particles when the robot's movement exceeds the
UpdateThresholds, which defines minimum displacement in [x, y, yaw] to trigger filter update. This
prevents too frequent updates due to sensor noise. Particle resampling happens after the
amcl.ResamplingInterval filter updates. Using larger numbers leads to slower particle depletion
at the price of slower particle convergence as well.

amcl.UpdateThresholds = [0.2,0.2,0.2];
amcl.ResamplingInterval = 1;

Configure AMCL Object for Localization with Initial Pose Estimate.

amcl.ParticleLimits defines the lower and upper bound on the number of particles that will be
generated during the resampling process. Allowing more particles to be generated may improve the
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chance of converging to the true robot pose, but has an impact on computation speed and particles
may take longer time or even fail to converge. Please refer to the 'KL-D Sampling' section in [1] for
computing a reasonable bound value on the number of particles. Note that global localization may
need significantly more particles compared to localization with an initial pose estimate. If the robot
knows its initial pose with some uncertainty, such additional information can help AMCL localize
robots faster with a less number of particles, i.e. you can use a smaller value of upper bound in
amcl.ParticleLimits.

Now set amcl.GlobalLocalization to false and provide an estimated initial pose to AMCL. By
doing so, AMCL holds the initial belief that robot's true pose follows a Gaussian distribution with a
mean equal to amcl.InitialPose and a covariance matrix equal to amcl.InitialCovariance.
Initial pose estimate should be obtained according to your setup. This example helper retrieves the
robot's current true pose from Gazebo.

Please refer to section Configure AMCL object for global localization for an example on using
global localization.

amcl.ParticleLimits = [500 5000];
amcl.GlobalLocalization = false;
amcl.InitialPose = ExampleHelperAMCLGazeboTruePose;
amcl.InitialCovariance = eye(3)*0.5;

Setup Helper for Visualization and Driving TurtleBot.

Setup ExampleHelperAMCLVisualization to plot the map and update robot's estimated pose, particles,
and laser scan readings on the map.

visualizationHelper = ExampleHelperAMCLVisualization(map);
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Robot motion is essential for the AMCL algorithm. In this example, we drive TurtleBot randomly
using the ExampleHelperAMCLWanderer class, which drives the robot inside the environment while
avoiding obstacles using the controllerVFH class.

wanderHelper = ...
    ExampleHelperAMCLWanderer(laserSub, sensorTransform, velPub, velMsg);

Localization Procedure

The AMCL algorithm is updated with odometry and sensor readings at each time step when the robot
is moving around. Please allow a few seconds before particles are initialized and plotted in the figure.
In this example we will run numUpdates AMCL updates. If the robot doesn't converge to the correct
robot pose, consider using a larger numUpdates.

numUpdates = 60;
i = 0;
while i < numUpdates
    % Receive laser scan and odometry message.
    scanMsg = receive(laserSub);
    odompose = odomSub.LatestMessage;
    
    % Create lidarScan object to pass to the AMCL object.
    scan = lidarScan(scanMsg);
    
    % For sensors that are mounted upside down, you need to reverse the
    % order of scan angle readings using 'flip' function.
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    % Compute robot's pose [x,y,yaw] from odometry message.
    odomQuat = [odompose.Pose.Pose.Orientation.W, odompose.Pose.Pose.Orientation.X, ...
        odompose.Pose.Pose.Orientation.Y, odompose.Pose.Pose.Orientation.Z];
    odomRotation = quat2eul(odomQuat);
    pose = [odompose.Pose.Pose.Position.X, odompose.Pose.Pose.Position.Y odomRotation(1)];
    
    % Update estimated robot's pose and covariance using new odometry and
    % sensor readings.
    [isUpdated,estimatedPose, estimatedCovariance] = amcl(pose, scan);
    
    % Drive robot to next pose.
    wander(wanderHelper);
    
    % Plot the robot's estimated pose, particles and laser scans on the map.
    if isUpdated
        i = i + 1;
        plotStep(visualizationHelper, amcl, estimatedPose, scan, i)
    end
    
end

Stop the TurtleBot and Shutdown ROS in MATLAB

stop(wanderHelper);
rosshutdown

Shutting down global node /matlab_global_node_73841 with NodeURI http://192.168.2.1:53461/
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Sample Results for AMCL Localization with Initial Pose Estimate

AMCL is a probabilistic algorithm, the simulation result on your computer may be slightly different
from the sample run shown here.

After first AMCL update, particles are generated by sampling Gaussian distribution with mean equal
to amcl.InitialPose and covariance equal to amcl.InitialCovariance.

After 8 updates, the particles start converging to areas with higher likelihood:
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After 60 updates, all particles should converge to the correct robot pose and the laser scans should
closely align with the map outlines.
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Configure AMCL Object for Global Localization.

In case no initial robot pose estimate is available, AMCL will try to localize robot without knowing the
robot's initial position. The algorithm initially assumes that the robot has equal probability in being
anywhere in the office's free space and generates uniformly distributed particles inside such space.
Thus Global localization requires significantly more particles compared to localization with initial
pose estimate.

To enable AMCL global localization feature, replace the code sections in Configure AMCL object
for localization with initial pose estimate with the code in this section.

     amcl.GlobalLocalization = true;
     amcl.ParticleLimits = [500 50000];

Sample Results for AMCL Global Localization

AMCL is a probabilistic algorithm, the simulation result on your computer may be slightly different
from the sample run shown here.

After first AMCL update, particles are uniformly distributed inside the free office space:
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After 8 updates, the particles start converging to areas with higher likelihood:
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After 60 updates, all particles should converge to the correct robot pose and the laser scans should
closely align with the map outlines.
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Compose a Series of Laser Scans with Pose Changes
Use the matchScans function to compute the pose difference between a series of laser scans.
Compose the relative poses by using a defined composePoses function to get a transformation to the
initial frame. Then, transform all laser scans into the initial frame using these composed poses.

Specify the original laser scan and offsets to generate a series of shifted laser scans. Iterate through
the scans and transform the original scan based on each offset. Plot the laser scans to see the shifted
data.

ranges = zeros(300,4);
angles = zeros(300,4);
ranges(:,1) = 5*ones(300,1);
ranges(11:30,1) = 4*ones(1,20);
ranges(101:200,1) = 3*ones(1,100);
angles(:,1) = linspace(-pi/2,pi/2,300);
offset(1,:) = [0.1 0.1 0];
offset(2,:) = [0.4 0.1 0.1];
offset(3,:) = [-0.2 0 -0.1];

for i = 2:4
    [ranges(:,i),angles(:,i)] = transformScan(ranges(:,i-1),angles(:,i-1),offset(i-1,:));
end

[x,y] = pol2cart(angles,ranges);
plot(x,y)
axis equal
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Perform scan matching on each laser scan set to get the relative pose between each scan. The
outputs from the matchScans function are close to the specified offsets. The initial scan is in the
initial frame, so the pose difference is [0 0 0].

relPoses(1,:) = [0 0 0];

for i = 2:4
    relPoses(i,:) = matchScans(ranges(:,i),angles(:,i),...
                       ranges(:,i-1),angles(:,i-1),'CellSize',1);
end

Use the composePoses function in a loop to get the absolute transformation for each laser scan. This
function is defined at the end of the example. Transform each scan to get them all in the initial frame.

transRanges = zeros(300,4);
transAngles = zeros(300,4);
transRanges(:,1) = ranges(:,1);
transAngles(:,1) = angles(:,1);
composedPoses(1,:) = [0 0 0];
for i = 2:4
    composedPoses(i,:) = composePoses(relPoses(i,:),composedPoses(i-1,:));
    [transRanges(:,i),transAngles(:,i)] = transformScan(ranges(:,i),angles(:,i),composedPoses(i,:)); 
end

Plot the transformed ranges and angles. They overlap well, based on the calculated transformations
from matchScans.

[x,y] = pol2cart(transAngles,transRanges);
plot(x,y)
axis equal
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Define the composePoses function. This function takes in the transformation of the initial frame to
the base frame and the relative transformation from the initial frame to a second frame. For a series
of laser scans, the relative input is the relative pose between the last two frames, and the base
input is the composed pose over all previous scans.

You can also define this function in a separate script and save to the current folder.

function composedPose = composePoses(relative,base) 
    %Convert both poses (3-by-1 vector) to transformations (4-by-4 matrix) and multiply
    %together using pose2tform function.
    tform = pose2tform(base)*pose2tform(relative);
    
    % Extract translational vector and Euler angles as ZYX.
    trvec = tform2trvec(tform); 
    eul = tform2eul(tform); 
    
    % Concatenate the elements of the transform as [x y theta].
    composedPose = [trvec(1:2) eul(1)]; 

    % Function to convert pose to transform.
    function tform = pose2tform(pose) 
        x = pose(1); 
        y = pose(2); 
        th = wrapTo2Pi(pose(3)); 
        tform = trvec2tform([x y 0])*eul2tform([th 0 0]); 
    end 
end
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See Also
matchScans | transformScan
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Minimize Search Range in Grid-based Lidar Scan Matching
Using IMU

This example shows how to use an inertial measurement unit (IMU) to minimize the search range of
the rotation angle for scan matching algorithms. IMU sensor readings are used to estimate the
orientation of the vehicle, and specified as the initial guess for the matchScansGrid function. This
method of initial pose estimation is compared to the base algorithm with assumes an initial guess of
[0 0 0].

Load Logged Data

Load the MAT-file, loggedLidarAndIMUData.mat.This file contains llidar scans, accelerometer
readings, and gyroscopes readings, and the corresponding timestamps.

rng(1); % Fixed RNG seed for repeatibility
load('loggedLidarAndIMUData', ...
    'tLidar', 'lidarScans', ...
    'imuFs', 'tIMU', 'accel', 'gyro');

startIdx = 1;
endIdx = numel(lidarScans)-1;

Sync IMU Time Indices with Lidar Time Indices

The IMU and lidar update at different sampling rates. Create an array that maps lidar to IMU indices.

lidarToIMUIndices = zeros(size(tLidar));
for i = 1:numel(tLidar)
    [~, lidarToIMUIndices(i)] = min(abs(tLidar(i) - tIMU));
end

Estimate Yaw from IMU

Estimate the orientation from the accelerometer and gyroscope readings as a quaternion using the
imufilter object. Then, calculate the relative yaws between successive lidar scans by converting
the quaternions to Euler angles.

orientFilt = imufilter('SampleRate', imuFs);
q = orientFilt(accel, gyro);

% Calculate relative yaws
eulerAngs = euler(q(lidarToIMUIndices(1+(startIdx:endIdx))) ...
    .* conj(q(lidarToIMUIndices(startIdx:endIdx))), 'ZYX', 'frame');
imuYaws = eulerAngs(:,1);

Run Scan Matching and Log Results

Run the matchScansGrid function with two different options:

• Default initial guess and search range
• Initial guess based on IMU sensor readings with a small search range

Iterate through all the lidar scans readings, running matchScansGrid with each pair of sequential
scans. Log the processing times for each function call and the relative pose outputs from scan
matching. To visualize the transformed scans based on the solution, set plotSolutions to 1.
However, in this example, the difference in pose between the two different options is not noticeable.
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smallSearchRange = pi/8;
plotSolutions = 0;

% Initialize time values and relative pose arrays
timeDefaultSearch = NaN(endIdx - startIdx + 1,1);
timeSmallSearchWithIMU = NaN(endIdx - startIdx + 1,1);
allRelPosesDefault = NaN(endIdx - startIdx + 1,3);
allRelPosesIMU = NaN(endIdx - startIdx + 1,3);

for idx = startIdx:endIdx
    scan1 = lidarScans(idx);
    scan2 = lidarScans(idx+1);
    
    yaw = imuYaws(idx);
    initGuess = [0 0 yaw];
    
    % Run scan matching with default values.
    tic;
    relPose = matchScansGrid(scan2, scan1);
    timeDefaultSearch(idx) = toc;
    
    allRelPosesDefault(idx,:) = relPose;
    
    % Run scan matching with IMU-based initial yaw and small search range.
    tic;
    relPose = matchScansGrid(scan2, scan1, 'InitialPose', initGuess, ...
        'RotationSearchRange', smallSearchRange);
    timeSmallSearchWithIMU(idx) = toc;
    allRelPosesIMU(idx,:) = relPose;
    
    % Set plot solutions to 1 to turn on scan visualization.
    if plotSolutions == 1
        figure(cfg,'Visibile','on')
        plot(scan1)
        hold on
        plot(transformScan(scan2, allRelPosesDefault(idx,:)))
        plot(transformScan(scan2, allRelPosesIMU(idx,:)))
        hold off
        legend('Ref Scan','Default', ...
            'Small Search Range + IMU',...
            'Location','northwest')
        title(sprintf('Matched Lidar Scans %d and %d', i, i+1))
    end
    
end

Compare Results

Visualize and compare the scan matching results. Show the total processing time as a bar chart.
Then, compare each iteration's time.

figure
title('Scan Matching Processing Time')
bar(categorical({'Default','IMU + Small Search'}), ...
    [sum(timeDefaultSearch),sum(timeSmallSearchWithIMU)])
ylabel('time (s)')
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figure
title('Difference in Interation Time')
plot(startIdx:endIdx,(timeDefaultSearch - timeSmallSearchWithIMU))
ylabel('Time (seconds)')
xlabel('Iteration')
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Based on the timing results, specifying IMU sensor readings as an estimate to the scan matching
algorithm improves the time of each iteration. As a final step, you can verify the difference in
estimate pose is not significant. For this example, all poses from matchScansGrid are the same.

figure
title('Difference in Pose Values')
plot(allRelPosesDefault-allRelPosesIMU)
legend('X','Y','Theta')
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Visual-Inertial Odometry Using Synthetic Data
This example shows how to estimate the pose (position and orientation) of a ground vehicle using an
inertial measurement unit (IMU) and a monocular camera. In this example, you:

1 Create a driving scenario containing the ground truth trajectory of the vehicle.
2 Use an IMU and visual odometry model to generate measurements.
3 Fuse these measurements to estimate the pose of the vehicle and then display the results.

Visual-inertial odometry estimates pose by fusing the visual odometry pose estimate from the
monocular camera and the pose estimate from the IMU. The IMU returns an accurate pose estimate
for small time intervals, but suffers from large drift due to integrating the inertial sensor
measurements. The monocular camera returns an accurate pose estimate over a larger time interval,
but suffers from a scale ambiguity. Given these complementary strengths and weaknesses, the fusion
of these sensors using visual-inertial odometry is a suitable choice. This method can be used in
scenarios where GPS readings are unavailable, such as in an urban canyon.

Create a Driving Scenario with Trajectory

Create a drivingScenario (Automated Driving Toolbox) object that contains:

• The road the vehicle travels on
• The buildings surrounding either side of the road
• The ground truth pose of the vehicle
• The estimated pose of the vehicle

The ground truth pose of the vehicle is shown as a solid blue cuboid. The estimated pose is shown as
a transparent blue cuboid. Note that the estimated pose does not appear in the initial visualization
because the ground truth and estimated poses overlap.

Generate the baseline trajectory for the ground vehicle using the waypointTrajectory (Sensor
Fusion and Tracking Toolbox) System object™. Note that the waypointTrajectory is used in place
of drivingScenario/trajectory since the acceleration of the vehicle is needed. The trajectory is
generated at a specified sampling rate using a set of waypoints, times of arrival, and velocities.

% Create the driving scenario with both the ground truth and estimated
% vehicle poses.
scene = drivingScenario;
groundTruthVehicle = vehicle(scene, 'PlotColor', [0 0.4470 0.7410]);
estVehicle = vehicle(scene, 'PlotColor', [0 0.4470 0.7410]);

% Generate the baseline trajectory.
sampleRate = 100;
wayPoints = [  0   0 0;
             200   0 0;
             200  50 0;
             200 230 0;
             215 245 0;
             260 245 0;
             290 240 0;
             310 258 0;
             290 275 0;
             260 260 0;
             -20 260 0];
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t = [0 20 25 44 46 50 54 56 59 63 90].';
speed = 10;
velocities = [ speed     0 0;
               speed     0 0;
                   0 speed 0;
                   0 speed 0;
               speed     0 0;
               speed     0 0;
               speed     0 0;
                   0 speed 0;
              -speed     0 0;
              -speed     0 0;
              -speed     0 0];

traj = waypointTrajectory(wayPoints, 'TimeOfArrival', t, ...
    'Velocities', velocities, 'SampleRate', sampleRate);

% Add a road and buildings to scene and visualize.
helperPopulateScene(scene, groundTruthVehicle);

Create a Fusion Filter

Create the filter to fuse IMU and visual odometry measurements. This example uses a loosely coupled
method to fuse the measurements. While the results are not as accurate as a tightly coupled method,
the amount of processing required is significantly less and the results are adequate. The fusion filter
uses an error-state Kalman filter to track orientation (as a quaternion), position, velocity, and sensor
biases.
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The insfilterErrorState object has the following functions to process sensor data: predict and
fusemvo.

The predict function takes the accelerometer and gyroscope measurements from the IMU as inputs.
Call the predict function each time the accelerometer and gyroscope are sampled. This function
predicts the state forward by one time step based on the accelerometer and gyroscope
measurements, and updates the error state covariance of the filter.

The fusemvo function takes the visual odometry pose estimates as input. This function updates the
error states based on the visual odometry pose estimates by computing a Kalman gain that weighs
the various inputs according to their uncertainty. As with the predict function, this function also
updates the error state covariance, this time taking the Kalman gain into account. The state is then
updated using the new error state and the error state is reset.

filt = insfilterErrorState('IMUSampleRate', sampleRate, ...
    'ReferenceFrame', 'ENU')
% Set the initial state and error state covariance.
helperInitialize(filt, traj);

filt = 

  insfilterErrorState with properties:

        IMUSampleRate: 100               Hz         
    ReferenceLocation: [0 0 0]           [deg deg m]
                State: [17x1 double]                
      StateCovariance: [16x16 double]               

   Process Noise Variances
            GyroscopeNoise: [1e-06 1e-06 1e-06]       (rad/s)²
        AccelerometerNoise: [0.0001 0.0001 0.0001]    (m/s²)² 
        GyroscopeBiasNoise: [1e-09 1e-09 1e-09]       (rad/s)²
    AccelerometerBiasNoise: [0.0001 0.0001 0.0001]    (m/s²)² 

Specify the Visual Odometry Model

Define the visual odometry model parameters. These parameters model a feature matching and
tracking-based visual odometry system using a monocular camera. The scale parameter accounts
for the unknown scale of subsequent vision frames of the monocular camera. The other parameters
model the drift in the visual odometry reading as a combination of white noise and a first-order
Gauss-Markov process.

% The flag useVO determines if visual odometry is used:
% useVO = false; % Only IMU is used.
useVO = true; % Both IMU and visual odometry are used.

paramsVO.scale = 2;
paramsVO.sigmaN = 0.139;
paramsVO.tau = 232;
paramsVO.sigmaB = sqrt(1.34);
paramsVO.driftBias = [0 0 0];
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Specify the IMU Sensor

Define an IMU sensor model containing an accelerometer and gyroscope using the imuSensor
System object. The sensor model contains properties to model both deterministic and stochastic noise
sources. The property values set here are typical for low-cost MEMS sensors.

% Set the RNG seed to default to obtain the same results for subsequent
% runs.
rng('default')

imu = imuSensor('SampleRate', sampleRate, 'ReferenceFrame', 'ENU');

% Accelerometer
imu.Accelerometer.MeasurementRange =  19.6; % m/s^2
imu.Accelerometer.Resolution = 0.0024; % m/s^2/LSB
imu.Accelerometer.NoiseDensity = 0.01; % (m/s^2)/sqrt(Hz)

% Gyroscope
imu.Gyroscope.MeasurementRange = deg2rad(250); % rad/s
imu.Gyroscope.Resolution = deg2rad(0.0625); % rad/s/LSB
imu.Gyroscope.NoiseDensity = deg2rad(0.0573); % (rad/s)/sqrt(Hz)
imu.Gyroscope.ConstantBias = deg2rad(2); % rad/s

Set Up the Simulation

Specify the amount of time to run the simulation and initialize variables that are logged during the
simulation loop.

% Run the simulation for 60 seconds.
numSecondsToSimulate = 60;
numIMUSamples = numSecondsToSimulate * sampleRate;

% Define the visual odometry sampling rate.
imuSamplesPerCamera = 4;
numCameraSamples = ceil(numIMUSamples / imuSamplesPerCamera);

% Preallocate data arrays for plotting results.
[pos, orient, vel, acc, angvel, ...
    posVO, orientVO, ...
    posEst, orientEst, velEst] ...
    = helperPreallocateData(numIMUSamples, numCameraSamples);

% Set measurement noise parameters for the visual odometry fusion.
RposVO = 0.1;
RorientVO = 0.1;

Run the Simulation Loop

Run the simulation at the IMU sampling rate. Each IMU sample is used to predict the filter's state
forward by one time step. Once a new visual odometry reading is available, it is used to correct the
current filter state.

There is some drift in the filter estimates that can be further corrected with an additional sensor such
as a GPS or an additional constraint such as a road boundary map.

cameraIdx = 1;
for i = 1:numIMUSamples
    % Generate ground truth trajectory values.
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    [pos(i,:), orient(i,:), vel(i,:), acc(i,:), angvel(i,:)] = traj();

    % Generate accelerometer and gyroscope measurements from the ground truth
    % trajectory values.
    [accelMeas, gyroMeas] = imu(acc(i,:), angvel(i,:), orient(i));

    % Predict the filter state forward one time step based on the
    % accelerometer and gyroscope measurements.
    predict(filt, accelMeas, gyroMeas);

    if (1 == mod(i, imuSamplesPerCamera)) && useVO
        % Generate a visual odometry pose estimate from the ground truth
        % values and the visual odometry model.
        [posVO(cameraIdx,:), orientVO(cameraIdx,:), paramsVO] = ...
            helperVisualOdometryModel(pos(i,:), orient(i,:), paramsVO);

        % Correct filter state based on visual odometry data.
        fusemvo(filt, posVO(cameraIdx,:), RposVO, ...
            orientVO(cameraIdx), RorientVO);

        cameraIdx = cameraIdx + 1;
    end

    [posEst(i,:), orientEst(i,:), velEst(i,:)] = pose(filt);

    % Update estimated vehicle pose.
    helperUpdatePose(estVehicle, posEst(i,:), velEst(i,:), orientEst(i));

    % Update ground truth vehicle pose.
    helperUpdatePose(groundTruthVehicle, pos(i,:), vel(i,:), orient(i));

    % Update driving scenario visualization.
    updatePlots(scene);
    drawnow limitrate;
end
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Plot the Results

Plot the ground truth vehicle trajectory, the visual odometry estimate, and the fusion filter estimate.

figure
if useVO
    plot3(pos(:,1), pos(:,2), pos(:,3), '-.', ...
        posVO(:,1), posVO(:,2), posVO(:,3), ...
        posEst(:,1), posEst(:,2), posEst(:,3), ...
        'LineWidth', 3)
    legend('Ground Truth', 'Visual Odometry (VO)', ...
        'Visual-Inertial Odometry (VIO)', 'Location', 'northeast')
else
    plot3(pos(:,1), pos(:,2), pos(:,3), '-.', ...
        posEst(:,1), posEst(:,2), posEst(:,3), ...
        'LineWidth', 3)
    legend('Ground Truth', 'IMU Pose Estimate')
end
view(-90, 90)
title('Vehicle Position')
xlabel('X (m)')
ylabel('Y (m)')
grid on
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The plot shows that the visual odometry estimate is relatively accurate in estimating the shape of the
trajectory. The fusion of the IMU and visual odometry measurements removes the scale factor
uncertainty from the visual odometry measurements and the drift from the IMU measurements.

Supporting Functions

helperVisualOdometryModel

Compute visual odometry measurement from ground truth input and parameters struct. To model the
uncertainty in the scaling between subsequent frames of the monocular camera, a constant scaling
factor combined with a random drift is applied to the ground truth position.

function [posVO, orientVO, paramsVO] ...
    = helperVisualOdometryModel(pos, orient, paramsVO)

% Extract model parameters.
scaleVO = paramsVO.scale;
sigmaN = paramsVO.sigmaN;
tau = paramsVO.tau;
sigmaB = paramsVO.sigmaB;
sigmaA = sqrt((2/tau) + 1/(tau*tau))*sigmaB;
b = paramsVO.driftBias;

% Calculate drift.
b = (1 - 1/tau).*b + randn(1,3)*sigmaA;
drift = randn(1,3)*sigmaN + b;
paramsVO.driftBias = b;
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% Calculate visual odometry measurements.
posVO = scaleVO*pos + drift;
orientVO = orient;
end

helperInitialize

Set the initial state and covariance values for the fusion filter.

function helperInitialize(filt, traj)

% Retrieve the initial position, orientation, and velocity from the
% trajectory object and reset the internal states.
[pos, orient, vel] = traj();
reset(traj);

% Set the initial state values.
filt.State(1:4) = compact(orient(1)).';
filt.State(5:7) = pos(1,:).';
filt.State(8:10) = vel(1,:).';

% Set the gyroscope bias and visual odometry scale factor covariance to
% large values corresponding to low confidence.
filt.StateCovariance(10:12,10:12) = 1e6;
filt.StateCovariance(end) = 2e2;
end

helperPreallocateData

Preallocate data to log simulation results.

function [pos, orient, vel, acc, angvel, ...
    posVO, orientVO, ...
    posEst, orientEst, velEst] ...
    = helperPreallocateData(numIMUSamples, numCameraSamples)

% Specify ground truth.
pos = zeros(numIMUSamples, 3);
orient = quaternion.zeros(numIMUSamples, 1);
vel = zeros(numIMUSamples, 3);
acc = zeros(numIMUSamples, 3);
angvel = zeros(numIMUSamples, 3);

% Visual odometry output.
posVO = zeros(numCameraSamples, 3);
orientVO = quaternion.zeros(numCameraSamples, 1);

% Filter output.
posEst = zeros(numIMUSamples, 3);
orientEst = quaternion.zeros(numIMUSamples, 1);
velEst = zeros(numIMUSamples, 3);
end

helperUpdatePose

Update the pose of the vehicle.

 Visual-Inertial Odometry Using Synthetic Data

1-189



function helperUpdatePose(veh, pos, vel, orient)

veh.Position = pos;
veh.Velocity = vel;
rpy = eulerd(orient, 'ZYX', 'frame');
veh.Yaw = rpy(1);
veh.Pitch = rpy(2);
veh.Roll = rpy(3);
end
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Reduce Drift in 3-D Visual Odometry Trajectory Using Pose
Graphs

This example shows how to reduce the drift in the estimated trajectory (location and orientation) of a
monocular camera using 3-D pose graph optimization. Visual odometry estimates the current global
pose of the camera (current frame). Because of poor matching or errors in 3-D point triangulation,
robot trajectories often tends to drift from the ground truth. Loop closure detection and pose graph
optimization reduce this drift and correct for errors.

Load Estimated Poses for Pose Graph Optimization

Load the estimated camera poses and loop closure edges. Estimated camera poses are computed
using visual odometry. Loop closure edges are computed by finding previous frame which saw the
current scene and estimating the relative pose between the current frame and the loop closure
candidate. Camera frames are sampled from [1].

% Estimated poses
load('estimatedpose.mat');
% Loopclosure edge
load('loopedge.mat');
% Groundtruth camera locations 
load('groundtruthlocations.mat');

Build 3-D Pose Graph

Create an empty pose graph.

pg3D = poseGraph3D;

Add nodes to the pose graph, with edges defining the relative pose and information matrix for the
pose graph. Convert the estimated poses, given as transformations, to relative poses as an [x y
theta qw qx qy qz] vector. An identity matrix is used for the information matrix for each pose.

len = size(estimatedPose,2);
informationmatrix = [1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1]; 
% Insert relative poses between all successive frames 
for k = 2:len
    % Relative pose between current and previous frame
    relativePose = estimatedPose{k-1}/estimatedPose{k};
    % Relative orientation represented in quaternions
    relativeQuat = tform2quat(relativePose);
    % Relative pose as [x y theta qw qx qy qz] 
    relativePose = [tform2trvec(relativePose),relativeQuat];
    % Add pose to pose graph
    addRelativePose(pg3D,relativePose,informationmatrix);
end

Add a loop closure edge. Add this edge between two existing nodes from the current frame to a
previous frame.

% Convert pose from transformation to pose vector.
relativeQuat = tform2quat(loopedge);
relativePose = [tform2trvec(loopedge),relativeQuat];
% Loop candidate
loopcandidateframeid = 1;
% Current frame
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currentframeid = 100;

addRelativePose(pg3D,relativePose,informationmatrix,...
                loopcandidateframeid,currentframeid);

figure
show(pg3D);

Optimize the pose graph. The nodes are adjusted based on the edge constraints to improve the
overall pose graph. To see the change in drift, plot the estimated poses and the new optimized poses
against the ground truth.

% Pose graph optimization
optimizedPosegraph = optimizePoseGraph(pg3D);
optimizedposes = nodes(optimizedPosegraph);
% Camera trajectory plots
figure
estimatedposes = nodes(pg3D);
plot3(estimatedposes(:,1),estimatedposes(:,2),estimatedposes(:,3),'r');
hold on
plot3(groundtruthlocations(:,1),groundtruthlocations(:,2),groundtruthlocations(:,3),'g');
plot3(optimizedposes(:,1),optimizedposes(:,2),optimizedposes(:,3),'b');
hold off
legend('Estimated pose graph','Ground truth pose graph', 'Optimized pose graph');
view(-20.8,-56.4);
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Create Egocentric Occupancy Maps Using Range Sensors
Occupancy Maps offer a simple yet robust way of representing an environment for robotic
applications by mapping the continuous world-space to a discrete data structure. Individual grid cells
can contain binary or probabilistic information, where 0 indicates free-space, and 1 indicates
occupied space. You can build up this information over time using sensor measurements and
efficiently store them in the map. This information is also useful for more advanced workflows, such
as collision detection and path planning.

This example shows how to create an egocentric occupancy map, which keeps track of the immediate
surroundings of the robot and can be efficiently moved around the environment. A trajectory is
generated by planning a path in the environment and dictates the motion of the robot. As the robot
moves around, the map is updated using sensor information from a simulated lidar and ground-truth
map.

Load a Prebuilt Ground-Truth Occupancy Map

Create a non-egocentric map from a previously generated data file, which is considered to be the
ground truth for the simulated lidar. Load the map, mapData, which contains the Data field as a
probabilistic matrix and convert it to binary values.

Create a binaryOccupancyMap object with the binary matrix and specify the resolution of the map.

% Load saved map information
load mapData_rayTracingTrajectory
binaryMatrix = mapData.Data > 0.5;
worldMap = binaryOccupancyMap(binaryMatrix,mapData.Resolution);

Set the location of the bottom-left corner of the map, relative to the world origin.

worldMap.LocalOriginInWorld = mapData.GridLocationInWorld;

Plot the ground truth. This example sets up a subplot for showing two maps side by side.

set(gcf,'Visible','on')
worldAx = subplot(1,2,1);
worldHandle = show(worldMap,'Parent',worldAx);
hold all

Create a Simulated Lidar

Create a rangeSensor object, which can be used to gather lidar readings from the simulation. You
can modify various properties on the rangeSensor to more accurately represent a particular model
of lidar, or add in sensor noise to test the robustness of your solution. For this example, set the [min
max] range and the noise parameter. After creating the object, retrieve and plot a reading from the
sensor by providing an [x y theta] pose relative to the world frame. Example helpers plot the
robot, and the lidar readings overtop the worldMap.

% Create rangeSensor
lidar = rangeSensor;
lidar.Range = [0 5];
lidar.RangeNoise = 0;
pos = [0 0 0];

% Show lidar readings in world map
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[ranges, angles] = lidar(pos, worldMap);
hSensorData = exampleHelperPlotLidar(worldAx, pos, ranges, angles);

% Show robot in world map
hRobot = exampleHelperPlotRobot(worldAx, pos);

Initialize an Egocentric Map

Create an occupancyMap object to represent the egocentric map. Offset the grid-origin relative to
the local-origin by setting the GridOriginInLocal property to half the difference between the
world limits. This shifts the bounds of the map so that the local-origin is centered.

% By default, GridOriginInLocal = [0 0]
egoMap = occupancyMap(10,10,worldMap.Resolution);

% Offset the GridOriginInLocal such that the "local frame" is located in the
% center of the "map-window"
egoMap.GridOriginInLocal = -[diff(egoMap.XWorldLimits) diff(egoMap.YWorldLimits)]/2;

Plot the egocentric map next to the world map in the subplot.
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% Update local plot
localAx = subplot(1,2,2);
show(egoMap,'Parent',localAx);
hold all
localMapFig = plot(localAx,egoMap.LocalOriginInWorld+[0 1], egoMap.LocalOriginInWorld+[0 0],'r-','LineWidth',3);

Plan Path Between Points

We can now use our ground-truth map to plan a path between two free points. Create a copy of the
world map and inflate it based on the robot size and desired clearance. This example uses a car-like
robot, which has non-holonomic constraints, specified with a stateSpaceDubins object. This state
space is used by the path planner for randomly sampling feasible states for the robot. Lastly, create a
validatorOccupancyMap object, which uses the map to validate generated states, and the motions
that connect them, by checking the corresponding cells for occupancy.

% Copy the world map and inflate it.
binaryMap = binaryOccupancyMap(worldMap);
inflate(binaryMap, 0.1);

% Create a state space object.
stateSpace = stateSpaceDubins;

% Reduce the turning radius to better fit the size of map and obstacle
% density.
stateSpace.MinTurningRadius = 0.5;

% Create a state validator object.
validator = validatorOccupancyMap(stateSpace);
validator.Map = binaryMap;
validator.ValidationDistance = 0.1;

Use the RRT* planning algorithm, as a plannerRRTStar object and specify the state space and state
validator as inputs. Specify start and end locations for the planner and generate a path.

% Create our planner using the previously created StateSpace and StateValidator objects
planner = plannerRRTStar(stateSpace, validator);
planner.MaxConnectionDistance = 2;

% Set a seed for the randomly generated path for reproducible results.
rng(1, 'twister')

% Set the start and end points.
startPt = [-6   -5      0];
goalPt  = [ 8    7   pi/2];

% Plan a path between start and goal points.
path = plan(planner, startPt, goalPt);
interpolate(path, size(path.States,1)*10);
plot(worldAx, path.States(:,1),path.States(:,2),'b-');

Generate a Trajectory Along the Path

The planner generated a set of states, but to execute a trajectory, times for the states are needed. The
goal of this example is to move the robot along the path with a constant linear velocity of 0.5 m/s. To
get timestamps for each point, calculate the distances between points, sum them cumulatively, then
divide this by the linear velocity to get a monotonically increasing array of timestamps, tStamps.
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% Get distance between each waypoint
pt2ptDist = distance(stateSpace,path.States(1:end-1,:),path.States(2:end,:))

pt2ptDist = 139×1

    0.1818
    0.1818
    0.1818
    0.1818
    0.1818
    0.1818
    0.1818
    0.1818
    0.1818
    0.1818
      ⋮

linVel = 0.5; % m/s
tStamps = cumsum(pt2ptDist)/linVel;

Generate a final simulated trajectory with waypointTrajectory, specifying the path states, the
corresponding timestamps, and a desired sample rate of 10Hz.

traj = waypointTrajectory(path.States, [0; tStamps], 'SampleRate', 10);

Simulate Sensor Readings and Build a Map

Lastly, move the robot along the trajectory while updating the map with the simulated Lidar readings.

To initialize the simulation, reset the trajectory, set the local origin to the first xy point on the
trajectory, and clear the map.

reset(traj);
robotCurrentPose = path.States(1,:);
move(egoMap, robotCurrentPose(1:2));
setOccupancy(egoMap,repmat(egoMap.DefaultValue,egoMap.GridSize));

The primary operations of the simulation loop are:

• Get the next pose in the trajectory from traj and extract the z-axis orientation (theta) from the
quaternion.

• Move the egoMap to the new [x y theta] pose.
• Retrieve sensor data from the lidar.
• Update the local map with sensor data using insertRay.
• Refresh the visualization.

while ~isDone(traj)
    % Increment robot along trajectory
    [pts, quat] = step(traj);
    
    % Get orientation angle from quaternion
    rotMatrix = rotmat(quat,'point');
    orientZ = rotm2eul(rotMatrix);
    
    % Move the robot to the new location
    robotCurrentPose = [pts(1:2) orientZ(1)];
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    move(egoMap, robotCurrentPose(1:2),'MoveType','Absolute');
    
    % Retrieve sensor information from the lidar and insert it into the egoMap
    [ranges, angles] = lidar(robotCurrentPose, worldMap);
    insertRay(egoMap, robotCurrentPose,ranges,angles,lidar.Range(2));

    % Update egoMap-centric plot
    show(egoMap, 'Parent', localAx, 'FastUpdate', 1);
    
    % Update orientation vector
    set(localMapFig, 'XData', robotCurrentPose(1)+[0 cos(robotCurrentPose(3))], 'YData', robotCurrentPose(2)+[0 sin(robotCurrentPose(3))]);

    % Update world plot
    exampleHelperUpdateRobotAndLidar(hRobot, hSensorData, robotCurrentPose, ranges, angles);

    % Call drawnow to push updates to the figure
    drawnow limitrate
end
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Note the robot drives through the environment, simulating sensor readings, and building an
occupancy map as it goes.
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Build Occupancy Map from Lidar Scans and Poses
The buildMap function takes in lidar scan readings and associated poses to build an occupancy grid
as lidarScan objects and associated [x y theta] poses to build an occupancyMap.

Load scan and pose estimates collected from sensors on a robot in a parking garage. The data
collected is correlated using a lidarSLAM algorithm, which performs scan matching to associate
scans and adjust poses over the full robot trajectory. Check to make sure scans and poses are the
same length.

load scansAndPoses.mat
length(scans) == length(poses)

ans = logical
   1

Build the map. Specify the scans and poses in the buildMap function and include the desired map
resolution (10 cells per meter) and the max range of the lidar (19.2 meters). Each scan is added at
the associated poses and probability values in the occupancy grid are updated.

occMap = buildMap(scans,poses,10,19.2);
figure
show(occMap)
title('Occupancy Map of Garage')
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Create Egocentric Occupancy Map from Driving Scenario
Designer

This example shows how to create an egocentric occupancy map from the Driving Scenario
Designer app. This example uses obstacle information from the vision detection generator to update
the egocentric occupancy map.

This example:

• Gets obstacle information and road geometry using vision detection generator.
• Creates an ego centric occupancy map using binary occupancy map.
• Updates the ego centric occupancy map using lane boundaries and obstacle information.

Introduction

Automated driving systems use multiple on-board sensors on the ego vehicle like radar, cameras, and
lidar. These sensors are used to perceive information from the surroundings and environment. It is
important to collate information from these heterogeneous sensors into a common temporal frame of
reference. This is usually done using an egocentric occupancy map. This map contains information
about the surrounding environment like road geometry, free space, and obstacles. This egocentric
occupancy map is used by planning algorithms for navigation. The ego vehicle can respond to
dynamic changes in the environment by periodically updating the information in this ego centric
occupancy map.

This example shows how to use lane and obstacle information obtained from a scenario to create and
update an ego centric occupancy map.

This example also uses a straight road scenario designed using Driving Scenario Designer (DSD). For
more details, see Driving Scenario Designer (Automated Driving Toolbox). You can also create a
Driving Scenario programmatically. For more details, refer to “Create Driving Scenario
Programmatically” (Automated Driving Toolbox).

Get Lane Boundaries and Obstacle Information from Driving Scenario

The scenario used in this example is a straight road with four lanes. This scenario has one ego vehicle
and six target vehicles which follow their respective predefined paths. Create a scenario using the
helper function, exampleHelperCreateStraightRoadScenario.

The scenario used in this example is shown in the following figure.

[scenario, egoVehicle] = exampleHelperCreateStraightRoadScenario;                           
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This example uses a vision detection generator which synthesizes camera sensor mounted at the front
of the ego vehicle in the driving scenario. This generator is configured to detect lane boundaries and
obstacles.

For more details, see visionDetectionGenerator (Automated Driving Toolbox).

The update interval of the vision detection generator is configured to generate detections at 0.1
second intervals, which is consistent with the update rate of typical automotive vision sensors.

Create the actorProfiles for the scenario, which contain physical and radar profiles of all driving
scenario actors including the ego vehicle. Specify those actors and other configuration parameters for
the vision detection generator.

profiles = actorProfiles(scenario);

% Configure vision detection generator to detect lanes and obstacles
sensor = visionDetectionGenerator('SensorIndex', 1, ...
    'SensorLocation', [1.9 0], ...
    'DetectionProbability', 1, ...
    'MinObjectImageSize', [5 5], ...
    'FalsePositivesPerImage', 0, ...
    'DetectorOutput', 'Lanes and objects', ...
    'Intrinsics', cameraIntrinsics([700 1814],[320 240],[480 640]), ...
    'ActorProfiles', profiles,...
    'UpdateInterval', 0.1);
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To get detections, the sensor object is called for each simulation step. This sensor object call
occurs in the helper function exampleHelperGetObstacleDataFromSensors.

Create an Egocentric Occupancy Map

This example uses a binaryOccupancyMap object to create an egocentric occupancy map.

Create a square occupancy map with 100 meters per side and a resolution of 2 cells per meter. Set all
the cells to occupied state by default.

egoMap = binaryOccupancyMap(100, 100, 2);
setOccupancy(egoMap,ones(200, 200));

By default, the map origin is at bottom-left. Move the egoMap origin to the center of the occupancy
map. This converts the occupancy map to an egocentric occupancy map.

egoMap.GridOriginInLocal = [-egoMap.XLocalLimits(2)/2, ...
                            -egoMap.YLocalLimits(2)/2];

Update the Egocentric Occupancy Map with Obstacle Information

Before updating the egoMap, initialize the visualization window. Obstacles in the egoMap
visualization are represented as black (occupied) and free space as white (unoccupied).

hAxes = exampleHelperSetupVisualization(scenario);

Setup a loop for executing the scenario using advance(scenario). This loop should move the
egoVehicle along the road, updating the pose as it moves.

Call move on the egoMap using the updated pose to get updated detections. Clear the map of all
obstacles for each update.

% Advancing the scenario
while advance(scenario)
    % Ego vehicle position
    egoPose = egoVehicle.Position;
    egoYaw = deg2rad(egoVehicle.Yaw);
    
    % Move the origin of grid to the face of the ego vehicle.
    move(egoMap, [egoPose(1), egoPose(2)]);
    
    %Reset the egoMap before updating with obstacle information
    setOccupancy(egoMap, ones(egoMap.GridSize));

Lane boundaries and obstacles information generated from a vision detection generator are used to
find occupied space that needs to be updated in the egoMap.

This example uses road boundaries information extracted from the lane boundaries. The region
outside road boundaries is also considered occupied.

The exampleHelperGetObstacleDataFromSensor helper function extracts road boundaries and
obstacle information generated from the vision detection generator.

    [obstacleInfo, roadBorders, isValidLaneTime] = ...
      exampleHelperGetObstacleDataFromSensor(scenario, egoMap, ...
                                egoVehicle, sensor);
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Depending upon the range of the vision detection generator, the detections may fall outside the
egoMap bounds. Using the egoMap bounds, the exampleHelperFitlerObstacles function
extracts the obstacles and free space that are within the egocentric map.

    [obstaclePoints, unoccupiedSpace] = exampleHelperFilterObstacles(...
                                         egoMap, obstacleInfo, ...
                                         roadBorders, ...
                                         isValidLaneTime, egoVehicle);

Use the filtered obstacle and free space locations to update the egocentric map. Update the
visualization.

        % Set the occupancy of free space to 0
        if ~isempty(unoccupiedSpace)
            setOccupancy(egoMap, unoccupiedSpace, 0);
        end
        
        % Set the occupancy of occupied space to 1
        if ~isempty(obstaclePoints)
            setOccupancy(egoMap, obstaclePoints, 1);
        end
        
        % Updating the visualization
        exampleHelperUpdateVisualization(hAxes, egoVehicle, egoPose, egoYaw, egoMap);
end
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Build Occupancy Map from Depth Images Using Visual
Odometry and Optimized Pose Graph

This example shows how to reduce the drift in the estimated trajectory (location and orientation) of a
monocular camera using 3-D pose graph optimization. In this example, you build an occupancy map
from the depth images, which can be used for path planning while navigating in that environment.

Load Estimated Poses for Pose Graph Optimization

Load the estimated camera poses and loop closure edges. The estimated camera poses were
computed using visual odometry. The loop closure edges were computed by finding the previous
frame that saw the current scene and estimating the relative pose between the current frame and the
loop closure candidate. Camera frames are sampled from a data set that contains depth images,
camera poses, and ground truth locations [1].

load('estimatedpose.mat');          % Estimated poses
load('loopedge.mat');               % Loopclosure edge
load('groundtruthlocations.mat');   % Ground truth camera locations 

Build 3-D Pose Graph

Create an empty pose graph.

pg3D = poseGraph3D;

Add nodes to the pose graph, with edges defining the relative pose and information matrix for the
pose graph. Convert the estimated poses, given as transformations, to relative poses as an [x y
theta qw qx qy qz] vector. An identity matrix is used for the information matrix for each pose.

len = size(estimatedPose,2);
informationmatrix = [1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1]; 
% Insert relative poses between all successive frames 
for k = 2:len
    % Relative pose between current and previous frame
    relativePose = estimatedPose{k-1}/estimatedPose{k};
    % Relative orientation represented in quaternions
    relativeQuat = tform2quat(relativePose);
    % Relative pose as [x y theta qw qx qy qz] 
    relativePose = [tform2trvec(relativePose),relativeQuat];
    % Add pose to pose graph
    addRelativePose(pg3D,relativePose,informationmatrix);
end

Add a loop closure edge. Add this edge between two existing nodes from the current frame to a
previous frame. Optimize the pose graph to adjust nodes based on the edge constraints and this loop
closure. Store the optimized poses.

% Convert pose from transformation to pose vector.
relativeQuat = tform2quat(loopedge);
relativePose = [tform2trvec(loopedge),relativeQuat];
% Loop candidate
loopcandidateframeid = 1;
% Current frame
currentframeid = 100;

addRelativePose(pg3D,relativePose,informationmatrix,...
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                loopcandidateframeid,currentframeid);
            
optimizedPosegraph = optimizePoseGraph(pg3D);
optimizedposes = nodes(optimizedPosegraph);

figure; 
show(pg3D);

Create Occupancy Map from Depth Images and Optimized Poses

Load the depth images and camera parameters from the dataset [1].

load('depthimagearray.mat');    % variable depthImages
load('freburgK.mat');           % variable K

Create a 3-D occupancy map with a resolution of 50 cells per meter. Read in the depth images
iteratively and convert the points in the depth image using the camera parameters and the optimized
poses of the camera. Insert the points as point clouds at the optimized poses to build the map. Show
the map after adding all the points. Because there are many depth images, this step can take several
minutes. Consider uncommenting the fprintf command to print the progress the image processing.

map3D = occupancyMap3D(50);

for k = 1:length(depthImages)
    points3D = exampleHelperExtract3DPointsFromDepthImage(depthImages{k},K);
    % fprintf('Processing Image %d\n', k);
    insertPointCloud(map3D,optimizedposes(k,:),points3D,1.5);
end
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Show the map.

figure;
show(map3D);
xlim([-2 2])
ylim([-2 1])
zlim([0 4])
view([-201 47])

References

[1] Galvez-López, D., and J. D. Tardós. "Bags of Binary Words for Fast Place Recognition in Image
Sequences." IEEE Transactions on Robotics. Vol. 28, No. 5, 2012, pp. 1188-1197.
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Implement Simultaneous Localization And Mapping (SLAM)
with Lidar Scans

This example demonstrates how to implement the Simultaneous Localization And Mapping (SLAM)
algorithm on a collected series of lidar scans using pose graph optimization. The goal of this example
is to build a map of the environment using the lidar scans and retrieve the trajectory of the robot.

To build the map of the environment, the SLAM algorithm incrementally processes the lidar scans
and builds a pose graph that links these scans. The robot recognizes a previously-visited place
through scan matching and may establish one or more loop closures along its moving path. The SLAM
algorithm utilizes the loop closure information to update the map and adjust the estimated robot
trajectory.

Load Laser Scan Data from File

Load a down-sampled data set consisting of laser scans collected from a mobile robot in an indoor
environment. The average displacement between every two scans is around 0.6 meters.

The offlineSlamData.mat file contains the scans variable, which contains all the laser scans used
in this example

load('offlineSlamData.mat');

A floor plan and approximate path of the robot are provided for illustrative purposes. This image
shows the relative environment being mapped and the approximate trajectory of the robot.

Run SLAM Algorithm, Construct Optimized Map and Plot Trajectory of the Robot

Create a lidarSLAM object and set the map resolution and the max lidar range. This example uses a
Jackal™ robot from Clearpath Robotics™. The robot is equipped with a SICK™ TiM-511 laser scanner
with a max range of 10 meters. Set the max lidar range slightly smaller than the max scan range
(8m), as the laser readings are less accurate near max range. Set the grid map resolution to 20 cells
per meter, which gives a 5cm precision.

maxLidarRange = 8;
mapResolution = 20;
slamAlg = lidarSLAM(mapResolution, maxLidarRange);
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The following loop closure parameters are set empirically. Using higher loop closure threshold helps
reject false positives in loop closure identification process. However, keep in mind that a high-score
match may still be a bad match. For example, scans collected in an environment that has similar or
repeated features are more likely to produce false positives. Using a higher loop closure search
radius allows the algorithm to search a wider range of the map around current pose estimate for loop
closures.

slamAlg.LoopClosureThreshold = 210;  
slamAlg.LoopClosureSearchRadius = 8;

Observe the Map Building Process with Initial 10 Scans

Incrementally add scans to the slamAlg object. Scan numbers are printed if added to the map. The
object rejects scans if the distance between scans is too small. Add the first 10 scans first to test your
algorithm.

for i=1:10
    [isScanAccepted, loopClosureInfo, optimizationInfo] = addScan(slamAlg, scans{i});
    if isScanAccepted
        fprintf('Added scan %d \n', i);
    end
end

Added scan 1 
Added scan 2 
Added scan 3 
Added scan 4 
Added scan 5 
Added scan 6 
Added scan 7 
Added scan 8 
Added scan 9 
Added scan 10 

Reconstruct the scene by plotting the scans and poses tracked by the slamAlg.

figure;
show(slamAlg);
title({'Map of the Environment','Pose Graph for Initial 10 Scans'});
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Observe the Effect of Loop Closures and the Optimization Process

Continue to add scans in a loop. Loop closures should be automatically detected as the robot moves.
Pose graph optimization is performed whenever a loop closure is identified. The output
optimizationInfo has a field, IsPerformed, that indicates when pose graph optimization occurs..

Plot the scans and poses whenever a loop closure is identified and verify the results visually. This plot
shows overlaid scans and an optimized pose graph for the first loop closure. A loop closure edge is
added as a red link.

firstTimeLCDetected = false;

figure;
for i=10:length(scans)
    [isScanAccepted, loopClosureInfo, optimizationInfo] = addScan(slamAlg, scans{i});
    if ~isScanAccepted
        continue;
    end
    % visualize the first detected loop closure, if you want to see the
    % complete map building process, remove the if condition below
    if optimizationInfo.IsPerformed && ~firstTimeLCDetected
        show(slamAlg, 'Poses', 'off');
        hold on;
        show(slamAlg.PoseGraph); 
        hold off;
        firstTimeLCDetected = true;
        drawnow
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    end
end
title('First loop closure');

Visualize the Constructed Map and Trajectory of the Robot

Plot the final built map after all scans are added to the slamAlg object. The previous for loop should
have added all the scans despite only plotting the initial loop closure.

figure
show(slamAlg);
title({'Final Built Map of the Environment', 'Trajectory of the Robot'});
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Visually Inspect the Built Map Compared to the Original Floor Plan

An image of the scans and pose graph is overlaid on the original floorplan. You can see that the map
matches the original floor plan well after adding all the scans and optimizing the pose graph.
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Build Occupancy Grid Map

The optimized scans and poses can be used to generate a occupancyMap, which represents the
environment as a probabilistic occupancy grid.

[scans, optimizedPoses]  = scansAndPoses(slamAlg);
map = buildMap(scans, optimizedPoses, mapResolution, maxLidarRange);

Visualize the occupancy grid map populated with the laser scans and the optimized pose graph.

figure; 
show(map);
hold on
show(slamAlg.PoseGraph, 'IDs', 'off');
hold off
title('Occupancy Grid Map Built Using Lidar SLAM');
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Implement Online Simultaneous Localization And Mapping
(SLAM) with Lidar Scans

This example demonstrates how to implement the Simultaneous Localization And Mapping (SLAM)
algorithm on lidar scans obtained from simulated environment using pose graph optimization. This
example requires Simulink® 3D Animation™ and Navigation Toolbox™.

The goal of this example is to build a map of the environment using the lidar scans and retrieve the
trajectory of the robot, with the robot simulator in the loop.

The basics of SLAM algorithm can be found in the “Implement Simultaneous Localization And
Mapping (SLAM) with Lidar Scans” on page 1-210 example.

Load Trajectory of the Robot from File

The robot trajectory are waypoints given to the robot to move in the simulated environment. For this
example, the robot trajectory is provided for you.

load slamRobotTrajectory.mat

A floor plan and approximate path of the robot are provided for illustrative purposes. This image
shows the environment being mapped and the approximate trajectory of the robot.

Load and View the Virtual World

This example uses a virtual scene with two vehicles and four walls as obstacles and a robot equipped
with a lidar scanner shown in the Simulink 3D Animation Viewer. You can navigate in a virtual scene
using the menu bar, toolbar, navigation panel, mouse, and keyboard. Key features of the viewer are
illustrated in the “Plane Manipulation Using Space Mouse MATLAB® Object” (Simulink 3D
Animation) example.

Create and open the vrworld object.

w = vrworld('slamSimulatedWorld.x3d');
open(w)

Create a figure showing the virtual scene

vrf = vrfigure(w)
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vrf = 

    vrfigure object: 1-by-1

    Differential Wheeled Robot with LIDAR Sensor

Initialize the Robot Position and Rotation in Virtual World

The virtual scene is represented as the hierarchical structure of a VRML file used by Simulink 3D
Animation. The position and orientation of child objects is relative to the parent object. The robot
vrnode is used to manipulate the position and orientation of the robot in the virtual scene.

To access a VRML node, an appropriate vrnode object must be created. The node is identified by its
name and the world it belongs to.

Create vrnode handle for robot in virtual environment.

robotVRNode = vrnode(w,'Robot');

Set the initial position of the robot from the trajectory first point and set the initial rotation to 0 rad
about y axis.
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robotVRNode.children.translation = [trajectory(1,1) 0 trajectory(1,2)];
robotVRNode.children.rotation = [0 1 0 0];

Create handle for lidar sensor on robot by creating vrnode.

lidarVRNode = vrnode(w,'LIDAR_Sensor');

The simulated lidar is using total 240 laser lines and the angle between these lines is 1.5 degree.

angles  = 180:-1.5:-178.5;
angles = deg2rad(angles)';

Waiting to update and initialize virtual scene

pause(1)

Create Lidar Slam Object

Create a lidarSLAM object and set the map resolution and the max lidar range. This example uses a
simulated virtual environment. The robot in this vrworld has a lidar sensor with range of 0 to 10
meters. Set the max lidar range (8m) smaller than the max scan range, as the laser readings are less
accurate near max range. Set the grid map resolution to 20 cells per meter, which gives a 5cm
precision. These two parameters are used throughout the example.

maxLidarRange = 8;
mapResolution = 20;
slamAlg = lidarSLAM(mapResolution,maxLidarRange);

The loop closure parameters are set empirically. Using a higher loop closure threshold helps reject
false positives in loop closure identification process. Keep in mind that a high-score match may still
be a bad match. For example, scans collected in an environment that has similar or repeated features
are more likely to produce false positive. Using a higher loop closure search radius allows the
algorithm to search a wider range of the map around the current pose estimate for loop closures.

slamAlg.LoopClosureThreshold = 200;
slamAlg.LoopClosureSearchRadius = 3;
controlRate = rateControl(10);

Observe the Effect of Loop Closure and Optimization Process

Create a loop to navigate the robot through the virtual scene. The robot position is updated in the
loop from the trajectory points. The scans are obtained from the robot as robot navigates through the
environment.

Loop closures are automatically detected as the robot moves. The pose graph optimization is
performed whenever a loop closure is detected. This can be checked using the output
optimizationInfo.IsPerformed value from addScan.

A snapshot is shown to demonstrate of the scans and poses when the first loop closure is identified
and verify the results visually. This plot shows overlaid scans and an optimized pose graph for the
first loop closure.

The final built map would be presented after all the scans are collected and processed.

The plot is updated continuously as robot navigates through virtual scene

firstLoopClosure = false;
scans = cell(length(trajectory),1);
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figure
for i=1:length(trajectory)
    % Use translation property to move the robot. 
    robotVRNode.children.translation = [trajectory(i,1) 0 trajectory(i,2)];
    vrdrawnow;
    
    % Read the range readings obtained from lidar sensor of the robot.
    range = lidarVRNode.pickedRange;
    
    % The simulated lidar readings will give -1 values if the objects are
    % out of range. Make all these value to the greater than
    % maxLidarRange.
    range(range==-1) = maxLidarRange+2;

    % Create a lidarScan object from the ranges and angles. 
    scans{i} = lidarScan(range,angles);
    
    [isScanAccepted,loopClosureInfo,optimizationInfo] = addScan(slamAlg,scans{i});
    if isScanAccepted
        % Visualize how scans plot and poses are updated as robot navigates
        % through virtual scene
        show(slamAlg);
        
        % Visualize the first detected loop closure
        % firstLoopClosure flag is used to capture the first loop closure event
        if optimizationInfo.IsPerformed && ~firstLoopClosure
            firstLoopClosure = true;
            show(slamAlg,'Poses','off');
            hold on;
            show(slamAlg.PoseGraph);
            hold off;
            title('First loop closure');
            snapnow
        end
    end

    waitfor(controlRate);
end
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Plot the final built map after all scans are added to the slamAlg object.

show(slamAlg,'Poses','off');
hold on
show(slamAlg.PoseGraph); 
hold off
title({'Final Built Map of the Environment','Trajectory of the Robot'});
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Build Occupancy Grid Map

The optimized scans and poses can be used to generate a occupancyMap which represents the
environment as a probabilistic occupancy grid.

[scans,optimizedPoses]  = scansAndPoses(slamAlg);
map = buildMap(scans,optimizedPoses,mapResolution,maxLidarRange);

Visualize the occupancy grid map populated with the laser scans and the optimized pose graph.

figure; 
show(map);
hold on
show(slamAlg.PoseGraph,'IDs','off');
hold off
title('Occupancy Grid Map Built Using Lidar SLAM');
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Close the virtual scene.

close(vrf);
close(w);
delete(w);
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Perform SLAM Using 3-D Lidar Point Clouds
This example demonstrates how to implement the Simultaneous Localization And Mapping (SLAM)
algorithm on collected 3-D lidar sensor data using point cloud processing algorithms and pose graph
optimization. The goal of this example is to estimate the trajectory of the robot and create a 3-D
occupancy map of the environment from the 3-D lidar point clouds and estimated trajectory.

The demonstrated SLAM algorithm estimates a trajectory using a Normal Distribution Transform
(NDT) based point cloud registration algorithm and reduces the drift using SE3 pose graph
optimization using trust-region solver whenever a robot revisits a place.

Load Data And Set Up Tunable Parameters

Load the 3-D lidar data collected from a Clearpath™ Husky robot in a parking garage. The lidar data
contains a cell array of n-by-3 matrices, where n is the number 3-D points in the captured lidar data,
and 3 columns represent xyz-coordinates associated with each captured point.

load pClouds.mat

Parameters For Point Cloud Registration Algorithm

Specify the parameters for estimating the trajectory using point cloud registration algorithm.
maxLidarRange specifies the maximum range of the 3-D laser scanner.

maxLidarRange = 20;

The point cloud data captured in an indoor environment contains points lying on the ground and
ceiling planes, which confuses the point cloud registration algorithms. So are removed from the point
cloud with these parameters:

• referenceVector - Normal to the ground plane.
• maxDistance - Maximum distance for inliers when removing the ground and ceiling planes.
• maxAngularDistance - Maximum angle deviation from the reference vector when fitting the

ground and ceiling planes.

referenceVector = [0, 0, 1];
maxDistance = 0.5;
maxAngularDistance = 15;

To improve the efficiency and accuracy of the registration algorithm, the point clouds are
downsampled using random sampling with a sample ratio specified by randomSampleRatio.

randomSampleRatio = 0.25;

gridStep specifies the voxel grid sizes in NDT registration algorithm. A scan is accepted only after
the robot moves by a distance greater than distanceMovedThreshold.

gridStep = 2.5;
distanceMovedThreshold = 0.3;

Tune these parameters for your specific robot and environment.

Parameters For Loop Closure Estimation Algorithm

Specify the parameters for the loop closure estimation algorithm. Loop closure is searched only
within a radius around the current robot location specified by loopClosureSearchRadius.
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loopClosureSearchRadius = 3;

The loop closure algorithm is based on 2-D submap and scan matching. A submap is created after
every nScansPerSubmap (Number of Scans per submap) accepted scans. Loop closure algorithm
disregards the most recent subMapThresh scans while searching for loop candidates.

nScansPerSubmap = 3;
subMapThresh = 50;

An annular region with z limits specified by annularRegionLimits is extracted from the point
clouds to remove the remaining points on floor and ceiling after the region of interest extraction
using point cloud plane fit algorithms.

annularRegionLimits = [-0.75,0.75];

The maximum acceptable Root Mean Squared Error (RMSE) in estimating relative pose between loop
candidates is specified by rmseThreshold. Choose a lower value for estimating accurate loop
closure edges, which has a high impact on pose graph optimization.

rmseThreshold = 0.26;

The threshold over scan matching score to accept a loop closure is specified by
loopClosureThreshold. Pose Graph Optimization is called after inserting
optimizationInterval loop closure edges into the pose graph.

loopClosureThreshold = 150;
optimizationInterval = 2;

Initialize Variables

Set up a pose graph, occupancy map, and necessary variables.

% 3D Posegraph object for storing estimated relative poses
pGraph = poseGraph3D;
% Default serialized upper-right triangle of 6-by-6 Information Matrix
infoMat = [1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,1];
% Number of loop closure edges added since last pose graph optimization and map refinement
numLoopClosuresSinceLastOptimization = 0; 
% True after pose graph optimization until the next scan
mapUpdated = false;
% Equals to 1 if the scan is accepted
scanAccepted = 0;

% 3D Occupancy grid object for creating and visualizing 3D map
mapResolution = 8; % cells per meter
omap = occupancyMap3D(mapResolution);

Preallocate variables for the processed point clouds, lidar scans, and submaps. Create a
downsampled set of point clouds for quickly visualizing the map.

pcProcessed = cell(1,length(pClouds));
lidarScans2d = cell(1,length(pClouds)); 
submaps = cell(1,length(pClouds)/nScansPerSubmap);

pcsToView = cell(1,length(pClouds)); 

Create variables for display purposes.
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% Set to 1 to visualize created map and posegraph during build process
viewMap = 1; 
% Set to 1 to visualize processed point clouds during build process
viewPC = 0;

Set random seed to guarantee consistent random sampling.

rng(0);

Initialize figure windows if desired.

% If you want to view the point clouds while processing them sequentially
if viewPC==1
    pplayer = pcplayer([-50 50],[-50 50],[-10 10],'MarkerSize',10);
end

% If you want to view the created map and posegraph during build process
if viewMap==1
    ax = newplot; % Figure axis handle
    view(20,50);
    grid on;
end

Trajectory Estimation And Refinement Using Pose Graph Optimization

The trajectory of the robot is a collection of robot poses (location and orientation in 3-D space). A
robot pose is estimated at every 3-D lidar scan acquisition instance using the 3-D lidar SLAM
algorithm. The 3-D lidar SLAM algorithm has the following steps:
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• Point cloud filtering
• Point cloud downsampling
• Point cloud registration
• Loop closure query
• Pose graph optimization

Iteratively process the point clouds to estimate the trajectory.

count = 0; % Counter to track number of scans added
disp('Estimating robot trajectory...');

Estimating robot trajectory...

for i=1:length(pClouds)
    % Read point clouds in sequence
    pc = pClouds{i};

Point Cloud Filtering

Point cloud filtering is done to extract the region of interest from the acquired scan. In this example,
the region of interest is the annular region with ground and ceiling removed.

Remove invalid points outside the max range and unnecessary points behind the robot corresponding
to the human driver.

    ind = (-maxLidarRange < pc(:,1) & pc(:,1) < maxLidarRange ...
        & -maxLidarRange  < pc(:,2) & pc(:,2) < maxLidarRange ...
        & (abs(pc(:,2))>abs(0.5*pc(:,1)) | pc(:,1)>0));
    
    pcl = pointCloud(pc(ind,:));

Remove points on the ground plane.

    [~, ~, outliers] = ...
        pcfitplane(pcl, maxDistance,referenceVector,maxAngularDistance);
    pcl_wogrd = select(pcl,outliers,'OutputSize','full');
    

Remove points on the ceiling plane.

    [~, ~, outliers] = ...
        pcfitplane(pcl_wogrd,0.2,referenceVector,maxAngularDistance);
    pcl_wogrd = select(pcl_wogrd,outliers,'OutputSize','full');
    

Select points in annular region.

    ind = (pcl_wogrd.Location(:,3)<annularRegionLimits(2))&(pcl_wogrd.Location(:,3)>annularRegionLimits(1));
    pcl_wogrd = select(pcl_wogrd,ind,'OutputSize','full');

Point Cloud Downsampling

Point cloud downsampling improves the speed and accuracy of the point cloud registration algorithm.
Down sampling should be tuned for specific needs. The random sampling algorithm is chosen
empirically from down sampling variants below for the current scenario.

    pcl_wogrd_sampled = pcdownsample(pcl_wogrd,'random',randomSampleRatio);
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    if viewPC==1
        % Visualize down sampled point cloud
        view(pplayer,pcl_wogrd_sampled);
        pause(0.001)
    end
    

Point Cloud Registration

Point cloud registration estimates the relative pose (rotation and translation) between current scan
and previous scan. The first scan is always accepted (processed further and stored) but the other
scans are only accepted after translating more than the specified threshold. poseGraph3D is used to
store the estimated accepted relative poses (trajectory).

    if count == 0
        % First can
        tform = [];
        scanAccepted = 1;
    else
        if count == 1
            tform = pcregisterndt(pcl_wogrd_sampled,prevPc,gridStep);
        else
            tform = pcregisterndt(pcl_wogrd_sampled,prevPc,gridStep,...
                'InitialTransform',prevTform);
        end
        
        relPose = [tform2trvec(tform.T') tform2quat(tform.T')];
        
        if sqrt(norm(relPose(1:3))) > distanceMovedThreshold
            addRelativePose(pGraph,relPose);
            scanAccepted = 1;
        else
            scanAccepted = 0;
        end
    end
    

Loop Closure Query

Loop closure query determines whether or not the current robot location has previously been visited.
The search is performed by matching the current scan with the previous scans within a small radius
around the current robot location specified by loopClosureSearchRadius. Searching within the
small radius is sufficient because of the low-drift in lidar odometry, as searching against all previous
scans is time consuming. Loop closure query consists of the following steps:

• Create submaps from nScansPerSubmap consecutive scans.
• Match the current scan with the submaps within the loopClosureSearchRadius.
• Accept the matches if the match score is greater than the loopClosureThreshold. All the scans

representing accepted submap are considered as probable loop candidates.
• Estimate the relative pose between probable loop candidates and the current scan. A relative pose

is accepted as a loop closure constraint only when the RMSE is less than the rmseThreshold.

    if scanAccepted == 1
        count = count + 1;
        
        pcProcessed{count} = pcl_wogrd_sampled;
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        lidarScans2d{count} = exampleHelperCreate2DScan(pcl_wogrd_sampled);
        
        % Submaps are created for faster loop closure query. 
        if rem(count,nScansPerSubmap)==0
            submaps{count/nScansPerSubmap} = exampleHelperCreateSubmap(lidarScans2d,...
                pGraph,count,nScansPerSubmap,maxLidarRange);
        end
        
        % loopSubmapIds contains matching submap ids if any otherwise empty.   
        if (floor(count/nScansPerSubmap)>subMapThresh)
            [loopSubmapIds,~] = exampleHelperEstimateLoopCandidates(pGraph,...
                count,submaps,lidarScans2d{count},nScansPerSubmap,...
                loopClosureSearchRadius,loopClosureThreshold,subMapThresh);
            
            if ~isempty(loopSubmapIds)
                rmseMin = inf;
                
                % Estimate best match to the current scan
                for k = 1:length(loopSubmapIds)
                    % For every scan within the submap
                    for j = 1:nScansPerSubmap
                        probableLoopCandidate = ...
                            loopSubmapIds(k)*nScansPerSubmap - j + 1;
                        [loopTform,~,rmse] = pcregisterndt(pcl_wogrd_sampled,...
                            pcProcessed{probableLoopCandidate},gridStep);
                        % Update best Loop Closure Candidate
                        if rmse < rmseMin
                            loopCandidate = probableLoopCandidate;
                            rmseMin = rmse;
                        end
                        if rmseMin < rmseThreshold
                            break;
                        end
                    end
                end
                
                % Check if loop candidate is valid
                if rmseMin < rmseThreshold
                    % loop closure constraint
                    relPose = [tform2trvec(loopTform.T') tform2quat(loopTform.T')];
                    
                    addRelativePose(pGraph,relPose,infoMat,...
                        loopCandidate,count);
                    numLoopClosuresSinceLastOptimization = numLoopClosuresSinceLastOptimization + 1;
                end
                     
            end
        end
        

Pose Graph Optimization

Pose graph optimization runs after a sufficient number of loop edges are accepted to reduce the drift
in trajectory estimation. After every loop closure optimization the loop closure search radius is
reduced due to the fact that the uncertainty in the pose estimation reduces after optimization.
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        if (numLoopClosuresSinceLastOptimization == optimizationInterval)||...
                ((numLoopClosuresSinceLastOptimization>0)&&(i==length(pClouds)))
            if loopClosureSearchRadius ~=1
                disp('Doing Pose Graph Optimization to reduce drift.');
            end
            % pose graph optimization
            pGraph = optimizePoseGraph(pGraph);
            loopClosureSearchRadius = 1;
            if viewMap == 1
                position = pGraph.nodes;
                % Rebuild map after pose graph optimization
                omap = occupancyMap3D(mapResolution);
                for n = 1:(pGraph.NumNodes-1)
                    insertPointCloud(omap,position(n,:),pcsToView{n}.removeInvalidPoints,maxLidarRange);
                end
                mapUpdated = true;
                ax = newplot;
                grid on;
            end
            numLoopClosuresSinceLastOptimization = 0;
            % Reduce the frequency of optimization after optimizing
            % the trjectory
            optimizationInterval = optimizationInterval*7;
        end

Visualize the map and pose graph during the build process. This visualization is costly, so enable it
only when necessary by setting viewMap to 1. If visualization is enabled then the plot is updated after
every 15 added scans.

        pcToView = pcdownsample(pcl_wogrd_sampled, 'random', 0.5);
        pcsToView{count} = pcToView;
        
        if viewMap==1
            % Insert point cloud to the occupance map in the right position
            position = pGraph.nodes(count);
            insertPointCloud(omap,position,pcToView.removeInvalidPoints,maxLidarRange);
            
            if (rem(count-1,15)==0)||mapUpdated
                exampleHelperVisualizeMapAndPoseGraph(omap, pGraph, ax);
            end
            mapUpdated = false;
        else
            % Give feedback to know that example is running
            if (rem(count-1,15)==0)
                fprintf('.');
            end
        end
        

Update previous relative pose estimate and point cloud.

        prevPc = pcl_wogrd_sampled;
        prevTform = tform;
    end
end

Doing Pose Graph Optimization to reduce drift.
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Build and Visualize 3-D Occupancy Map

The point clouds are inserted into occupancyMap3D using the estimated global poses. After iterating
through all the nodes, the full map and estimated vehicle trajectory is shown.

if (viewMap ~= 1)||(numLoopClosuresSinceLastOptimization>0)
    nodesPositions = nodes(pGraph);
    % Create 3D Occupancy grid
    omapToView = occupancyMap3D(mapResolution);
    
    for i = 1:(size(nodesPositions,1)-1)
        pc = pcsToView{i};
        position = nodesPositions(i,:);
        
        % Insert point cloud to the occupance map in the right position
        insertPointCloud(omapToView,position,pc.removeInvalidPoints,maxLidarRange);
    end
    
    figure;
    axisFinal = newplot;
    exampleHelperVisualizeMapAndPoseGraph(omapToView, pGraph, axisFinal);
end
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Plan Mobile Robot Paths using RRT
This example shows how to use the rapidly-exploring random tree (RRT) algorithm to plan a path for
a vehicle through a known map. Special vehicle constraints are also applied with a custom state
space. You can tune your own planner with custom state space and path validation objects for any
navigation application.

Load Occupancy Map

Load an existing occupancy map of a small office space. Plot the start and goal poses of the vehicle on
top of the map.

load("office_area_gridmap.mat", "occGrid")
show(occGrid)

% Set the start and goal poses
start = [-1.0, 0.0, -pi];
goal = [14, -2.25, 0];

% Show the start and goal positions of the robot
hold on
plot(start(1), start(2), 'ro')
plot(goal(1), goal(2), 'mo')

% Show the start and goal headings
r = 0.5;
plot([start(1), start(1) + r*cos(start(3))], [start(2), start(2) + r*sin(start(3))], 'r-' )
plot([goal(1), goal(1) + r*cos(goal(3))], [goal(2), goal(2) + r*sin(goal(3))], 'm-' )
hold off
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Define State Space

Specify the state space of the vehicle using a stateSpaceDubins object and specifying the state
bounds. This object limits the sampled states to feasible Dubins curves for steering a vehicle within
the state bounds. A turning radius of 0.4m allows for tight turns in this small environment.

bounds = [occGrid.XWorldLimits; occGrid.YWorldLimits; [-pi pi]];

ss = stateSpaceDubins(bounds);
ss.MinTurningRadius = 0.4;

Plan The Path

To plan a path, the RRT algorithm samples random states within the state space and attempts to
connect a path. These states and connections need to be validated or excluded based on the map
constraints. The vehicle must not collide with obstacles defined in the map.

Create a validatorOccupancyMap object with the specified state space. Set the Map property to
the loaded occupancyMap object. Set a ValdiationDistance of 0.05m. This distance discretizes
the path connections and checks obstacles in the map based on this.

stateValidator = validatorOccupancyMap(ss); 
stateValidator.Map = occGrid;
stateValidator.ValidationDistance = 0.05;

Create the path planner and increase the max connection distance to connect more states. Set the
maximum number of iterations for sampling states.
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planner = plannerRRT(ss, stateValidator);
planner.MaxConnectionDistance = 2.0;
planner.MaxIterations = 30000;

Customize the GoalReached function. This example helper function checks if a feasible path reaches
the goal within a set threshold. The function returns true when the goal has been reached, and the
planner stops.

planner.GoalReachedFcn = @exampleHelperCheckIfGoal;

function isReached = exampleHelperCheckIfGoal(planner, goalState, newState)
    isReached = false;
    threshold = 0.1;
    if planner.StateSpace.distance(newState, goalState) < threshold
        isReached = true;
    end
end

Plan the path between the start and goal. Because of the random sampling, this example sets the rng
seed for consistent results.

rng(0,'twister')

[pthObj, solnInfo] = plan(planner, start, goal);

Plot the Path

Show the occupancy map. Plot the search tree from the solnInfo. Interpolate and overlay the final
path.

show(occGrid)
hold on

% Search tree
plot(solnInfo.TreeData(:,1), solnInfo.TreeData(:,2), '.-');

% Interpolate and plot path
interpolate(pthObj,300)
plot(pthObj.States(:,1), pthObj.States(:,2), 'r-', 'LineWidth', 2)

% Show the start and goal in the grid map
plot(start(1), start(2), 'ro')
plot(goal(1), goal(2), 'mo')
hold off
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Customize Dubins Vehicle Constraints

To specify custom vehicle constraints, customize the state space object. This example uses
ExampleHelperStateSpaceOneSidedDubins, which is based on the stateSpaceDubins class.
This helper class limits the turning direction to either right or left based on a Boolean property,
GoLeft. This property essentially disables path types of the dubinsConnection object uses (see
dubinsConnection.DisabledPathTypes).

Create the state space object using the example helper. Specify the same state bounds and give the
new Boolean parameter as true (left turns only).

% Only making left turns
goLeft = true;

% Create the state space
ssCustom = ExampleHelperStateSpaceOneSidedDubins(bounds, goLeft);
ssCustom.MinTurningRadius = 0.4;

Plan The Path

Create a new planner object with the custom Dubins constraints and a validator based on those
constraints. Specify the same GoalReached function.

stateValidator2 = validatorOccupancyMap(ssCustom); 
stateValidator2.Map = occGrid;
stateValidator2.ValidationDistance = 0.05;
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planner = plannerRRT(ssCustom, stateValidator2);
planner.MaxConnectionDistance = 2.0;
planner.MaxIterations = 30000;
planner.GoalReachedFcn = @exampleHelperCheckIfGoal;

Plan the path between the start and goal. Reset the rng seed again.

rng(0, 'twister')
[pthObj2, solnInfo] = plan(planner, start, goal);

Plot the path

Draw the new path on the map. The path should only execute left turns to reach the goal. This
example shows how you can customize your constraints and still plan paths using the generic RRT
algorithm.

figure
show(occGrid)

hold on

% show the search tree
plot(solnInfo.TreeData(:,1), solnInfo.TreeData(:,2), '.-'); % tree expansion

% draw path (after the path is interpolated)
pthObj2.interpolate(300)
plot(pthObj2.States(:,1), pthObj2.States(:,2), 'r-', 'LineWidth', 2)

% Show the start and goal in the grid map
plot(start(1), start(2), 'ro')
plot(goal(1), goal(2), 'mo')
hold off
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Moving Furniture in a Cluttered Room with RRT
This example shows how to plan a path to move bulky furniture in a tight space avoiding poles. This
example shows a workflow of the "Piano Mover's Problem", which is used for testing path planning
algorithms with constrained state spaces. This example uses the plannerRRTStar object to
implement a custom optimized rapidly-exploring tree (RRT*) algoirthm. Provided example helpers
illustrate how to define custom state spaces and state valdiation for any motion planning application.

Model the Scene

To help visualize and solve this path planning problem, two helper classes are provided,
ExampleHelperFurniture and ExampleHelperRoom. The ExampleHelperFurniture class
assembles the furniture by putting three rectangle collision boxes together. The furniture is set up as
below:

The ExampleHelperRoom defines the dimension of the room and provides functions to insert
furniture into the room and to check whether the furniture is in collision with the walls or poles.
These two classes are used for the state validator of the planner.

Show the room with a given length and width. Add a piece of furniture with a given pose.
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len = 6;
wid = 2;
room = ExampleHelperRoom(len, wid);
chair = ExampleHelperFurniture;
addFurniture(room,chair,trvec2tform([0 3.5 0]));
show(room,gca)
axis equal

Configure State Space

Create a stateSpaceSE2 object for the furniture. Set the bounds based on the room dimensions. The
state space samples random states in the state space. In this example, the furniture state is a 3-
element vector, [x y theta], for the xy-coordinates and angle of rotation in radians.

bounds = [-0.8 0.8; [-1 5]; [-pi pi]];

ss = stateSpaceSE2(bounds);
ss.WeightTheta = 2;

Create a Custom State Validator

The planner requires a customized state validator to enable collision checking between furniture and
the fixtures in the room. The provided class, ExampleHelperFurnitureInRoomValidator, checks
the validity of the furniture states based on the pairwise convex polygon collision checking functions.
The class automatically creates a room and puts the weird-shaped furniture in it at construction.

% Set the initial pose of the furniture
initPose = trvec2tform([0 3.5 0]);
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% Create a customized state validator
sv = ExampleHelperFurnitureInRoomValidator(ss, initPose);

% Reduce the validation distance
% Validation distance determines the granularity of interpolation when
% checking the motion that connects two states.
sv.ValidationDistance = 0.1;

Configure the Path Planner

Use plannerRRTStar as the planner and specify the custom state space and state validator. Specify
additional parameters for the planner. The GoalReached example helper function returns true
when a feasible path gets close enough to the goal within a threshold. This exits the planner.

% Create the planner
rrt = plannerRRTStar(ss, sv);

% Set ball radius for searching near neighbors
rrt.BallRadiusConstant = 1000;

% Exit as soon as a path is found
rrt.ContinueAfterGoalReached = false;

% The motion length between two furniture poses should be less than 0.4 m
rrt.MaxConnectionDistance = 0.4;

% Increase the max iterations
rrt.MaxIterations = 20000;

% Use a customized goal function 
rrt.GoalReachedFcn = @exampleHelperGoalFunc;

Plan the Move

Set a start and end pose for the furniture. This example moves from one pole to the other and rotates
the chair pi radians. Plan the path between poses. Visualize the search tree and final path.

% Set the init and goal poses
start = [0 3.5 0];
goal = [0 -0.2 pi];

% Set random number seed for repeatability
rng(0, 'twister');
[path, solnInfo] = plan(rrt,start,goal);

hold on
% Search tree
plot(solnInfo.TreeData(:,1), solnInfo.TreeData(:,2), '.-');
% Interpolate path and plot points
interpolate(path,300)
plot(path.States(:,1), path.States(:,2), 'r-', 'LineWidth', 2)

hold off
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Visualize the Motion

An example helper is provided for smoothing the path by cutting corners of the path where possible.
Animate the motion of the furniture from start to goal pose. The animation plot shows intermediate
states as the furniture navigates to the goal position.

f = figure;

% Smooth the path, cut the corners wherever possible
pathSm = exampleHelperSmoothPath(path, sv);

interpolate(pathSm,100);
animateFurnitureMotion(sv.Room,1,pathSm.States, axes(f))

% show the trace of furniture
skip = 6;
states = pathSm.States([1:skip:end, pathSm.NumStates], :);
exampleHelperShowFurnitureTrace(sv.Room.FurnituresInRoom{1}, states);
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Motion Planning with RRT for a Robot Manipulator
Plan a grasping motion for a Kinova Jaco Assistive Robotics Arm using the rapidly-exploring
random tree (RRT) algorithm. This example uses a plannerRRTStar object to sample states and
plan the robot motion. Provided example helpers illustrate how to define custom state spaces and
state validation for motion planning applications.

Load a Kinova Jaco model from the robot library. This particular model includes the three-finger
gripper.

kin = loadrobot('kinovaJacoJ2S7S300');

Create The Environment

Using collision object primitives, add a floor, two table tops, and a cylinder can. Specify the size and
pose of these objects. The provided image shows the environment created.

floor = collisionBox(1, 1, 0.01);
tabletop1 = collisionBox(0.4,1,0.02);
tabletop1.Pose = trvec2tform([0.3,0,0.6]);
tabletop2 = collisionBox(0.6,0.2,0.02);
tabletop2.Pose = trvec2tform([-0.2,0.4,0.5]);
can = collisionCylinder(0.03,0.16);
can.Pose = trvec2tform([0.3,0.0,0.7]);
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Customize The State Space For Manipulator

The Kinova arm has ten degrees of freedom (DoFs), with the last three DoFs corresponding to the
fingers. Only use the first seven DoFs for the planning and keep the fingers at zero configuration
(open wide). An ExampleHelperRigidBodyTreeStateSpace state space is created to represent
the configuration space (joint space). ExampleHelperRigidBodyTreeStateSpace samples feasible
states for the robot arm. The sampleUniform function of the state space alternates between the
following two sampling strategies with equal probability:

• Uniformly random sample the end effector pose in the Workspace Goal Region around the
reference goal pose, then map it to the joint space through inverse kinematics. Joint limits are
respected.
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• Uniformly random sample in the joint space. Joint limits are respected.

The first sampling strategy helps guide the RRT planner towards the goal region in the task space so
that RRT can converge to a solution faster instead of getting lost in the seven DoF joint space.

Using Workspace Goal Region (WGR) instead of single goal pose increases the chance of finding a
solution by biasing samples to the goal region. WGR defines a continuum of acceptable end-effector
poses for certain tasks. For example, the robot can approach from multiple directions to grasp a cup
of water from the side, as long as it doesn't collide with the environment. The concept of WGR is first
proposed by Dmitry Berenson et al [1] in 2009. This algorithm later evolved into Task Space
Regions [2]. A WGR consists of three parts:

• Twgr_0 - The reference transform of a WGR in world ({0}) coordinates
• Te_w - The end-effector offset transform in the {w} coordinates, {w} is sampled from WGR
• Bounds - A 6-by-2 matrix of bounds in the WGR reference coordinates. The first three rows of

Bounds set the allowable translation along the x, y, and z axes (in meters) respectively and the
last three set the allowable rotations about the allowable rotations about the x, y, and z axes (in
radians). Note that the Roll-Pitch-Yaw (RPY) Euler angles are used as they can be intuitively
specified.

You can define and concatenate multiple WGRs in one planning problem. In this example, only one
WGR is allowed.

% Create state space and set workspace goal regions (WGRs)
ss = ExampleHelperRigidBodyTreeStateSpace(kin);
ss.EndEffector = 'j2s7s300_end_effector';

% Define the workspace goal region (WGR)
% This WGR tells the planner that the can shall be grasped from
% the side and the actual grasp height may wiggle at most 1 cm.

% This is the orientation offset between the end-effector in grasping pose and the can frame
R = [0 0 1; 1 0 0; 0 1 0]; 

Tw_0 = can.Pose;
Te_w = rotm2tform(R);
bounds = [0 0;       % x
          0 0;       % y
          0 0.01;    % z
          0 0;       % R
          0 0;       % P
         -pi pi];    % Y
setWorkspaceGoalRegion(ss,Tw_0,Te_w,bounds);

Customize The State Validator

The customized state validator, ExampleHelperValidatorRigidBodyTree, provides rigid body
collision checking between the robot and the environment. This validator checks sampled
configurations and the planner should discard invalid states.

sv = ExampleHelperValidatorRigidBodyTree(ss);

% Add obstacles in the environment
addFixedObstacle(sv,tabletop1, 'tabletop1', [71 161 214]/256);
addFixedObstacle(sv,tabletop2, 'tabletop2', [71 161 214]/256);
addFixedObstacle(sv,can, 'can', 'r');
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addFixedObstacle(sv,floor, 'floor', [1,0.5,0]);

% Skip collision checking for certain bodies for performance
skipCollisionCheck(sv,'root'); % root will never touch any obstacles
skipCollisionCheck(sv,'j2s7s300_link_base'); % base will never touch any obstacles
skipCollisionCheck(sv,'j2s7s300_end_effector'); % this is a virtual frame

% Set the validation distance
sv.ValidationDistance = 0.01;

Plan The Grasp Motion

Use the plannerRRT object with the customized state space and state validator objects. Specify the
start and goal configurations by using inverseKinematics to solve for configrations based on the
end-effector pose. Specify the GoalReachedFcn using
exampleHelperIsStateInWorkspaceGoalRegion, which checks if a path reaches the goal
region.

% Set random seeds for repeatable results
rng(0,'twister') % 0

% Compute the reference goal configuration. Note this is applicable only when goal bias is larger than 0. 
Te_0ref = Tw_0*Te_w; % Reference end-effector pose in world coordinates, derived from WGR
ik = inverseKinematics('RigidBodyTree',kin);
refGoalConfig = ik(ss.EndEffector,Te_0ref,ones(1,6),homeConfiguration(ss.RigidBodyTree));

% Compute the initial configuration (end-effector is initially under the table)
T = Te_0ref;
T(1,4) = 0.3;
T(2,4) = 0.0;
T(3,4) = 0.4;
initConfig = ik(ss.EndEffector,T,ones(1,6),homeConfiguration(ss.RigidBodyTree));

% Create the planner from previously created state space and state validator
planner = plannerRRT(ss,sv);

% If a node in the tree falls in the WGR, a path is considered found.
planner.GoalReachedFcn = @exampleHelperIsStateInWorkspaceGoalRegion;

% Set the max connection distance.
planner.MaxConnectionDistance = 0.5;

% With WGR, there is no need to specify a particular goal configuration (use
% initConfig to hold the place).
% As a result, one can set GoalBias to zero.
planner.GoalBias = 0;
[pthObj,solnInfo] = plan(planner,initConfig, initConfig);

Visualize The Grasp Motion

The found path is first smoothed through a recursive corner-cutting strategy [3], before the motion is
animated.

% Smooth the path.
interpolate(pthObj,100);
newPathObj = exampleHelperPathSmoothing(pthObj,sv);
interpolate(newPathObj,200);
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figure
states = newPathObj.States;

% Draw the robot.
ax = show(kin,states(1,:));
zlim(ax, [-0.03, 1.4])
xlim(ax, [-1, 1])
ylim(ax, [-1, 1])

% Render the environment.
hold on
showObstacles(sv, ax);
view(146, 33)
camzoom(1.5)

% Show the motion.
for i = 2:length(states)
    show(kin,states(i,:),'PreservePlot',false,'Frames','off','Parent',ax);
    drawnow
end

q = states(i,:);

% Grab the can.
q = exampleHelperEndEffectorGrab(sv,'can',q, ax);

Set a target psotion for the can on the other tabletop.

targetPos = [-0.15,0.35,0.51];
exampleHelperDrawHorizontalCircle(targetPos,0.02,'y',ax);
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Plan The Move Motion

During the move motion, keep the cylinder can level at all time to avoid spill. Specify an additional
constraint on the interim manipulator configurations for the RRT planner. Turn the constraint on by
setting the UseConstrainedSampling property to true.

Tw_0 = trvec2tform(targetPos+[0,0,0.08]); 
Te_w = rotm2tform(R);
bounds =  [0 0;       % x
           0 0;       % y
           0 0;       % z
           0 0;       % R
           0 0;       % P
          -pi pi];    % Y
setWorkspaceGoalRegion(ss,Tw_0,Te_w,bounds);
ss.UseConstrainedSampling = true;
planner.MaxConnectionDistance = 0.05;
[pthObj2,~] = plan(planner,q,q);

Visualize the motion.

states = pthObj2.States;

view(ax, 152,45)
for i = 2:length(states)
    show(kin,states(i,:),'PreservePlot',false,'Frames','off','Parent',ax);
    drawnow
end

1 Navigation Featured Examples

1-248



q = states(i,:);

% let go of the can
q = exampleHelperEndEffectorRelease(sv,q,ax);
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Dynamic Replanning on an Indoor Map
This example shows how to perform dynamic replanning on a warehouse map with a range finder and
an A* path planner.

Create Warehouse Map

Define a binaryOccupancyMap that contains the floor plan for the warehouse. This information will
be used to create an initial route from the warehouse entrance to the package pickup.

map = binaryOccupancyMap(100, 80, 1);
occ = zeros(80, 100);

occ(1,:) = 1;
occ(end,:) = 1;
occ([1:30, 51:80],1) = 1;
occ([1:30, 51:80],end) = 1;

occ(40,20:80) = 1;
occ(28:52,[20:21 32:33 44:45 56:57 68:69 80:81]) = 1;

occ(1:12, [20:21 32:33 44:45 56:57 68:69 80:81]) = 1;

occ(end-12:end, [20:21 32:33 44:45 56:57 68:69 80:81]) = 1;

setOccupancy(map, occ)

figure
show(map)
title('Warehouse Floor Plan')
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Plan Route to Pickup

Create a plannerHybridAStar and use the previously created floor plan to generate an initial
route.

estMap = occupancyMap(occupancyMatrix(map));
vMap = validatorOccupancyMap;
vMap.Map = estMap;
planner = plannerHybridAStar(vMap, 'MinTurningRadius', 2);

entrance = [1 40 0];
packagePickupLocation = [63 44 -pi/2];
route = plan(planner, entrance, packagePickupLocation);
route = route.States;

% Get poses from the route.
rsConn = reedsSheppConnection('MinTurningRadius', planner.MinTurningRadius);
startPoses = route(1:end-1,:);
endPoses = route(2:end,:);

rsPathSegs = connect(rsConn, startPoses, endPoses);
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poses = [];
for i = 1:numel(rsPathSegs)
    lengths = 0:0.1:rsPathSegs{i}.Length;
    [pose, ~] = interpolate(rsPathSegs{i}, lengths);
    poses = [poses; pose];
end

figure
show(planner)
title('Initial Route to Package')

Place an Obstacle in the Route

Add an obstacle to the map that is on the route the forklift will take to the package.

obstacleWidth = 6;
obstacleHeight = 11;
obstacleBottomLeftLocation = [34 49];
values = ones(obstacleHeight, obstacleWidth);
setOccupancy(map, obstacleBottomLeftLocation, values)

1 Navigation Featured Examples

1-252



figure 
show(map)
title('Warehouse Floor Plan with Obstacle')

Specify the Range Finder

Create the range finder using the rangeSensor object.

rangefinder = rangeSensor('HorizontalAngle', pi/2);
numReadings = rangefinder.NumReadings;

Update the Route Based on Range Finder Readings

Advance the forklift forward using the poses from the path planner. Get the new obstacle detections
from the range finder and insert them into the estimated map. If the route is now occupied in the
updated map, recalculate the route. Repeat until the goal is reached.

% Setup visualization.
helperViz = HelperUtils;
figure
show(estMap)
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hold on
robotPatch = helperViz.plotRobot(gca, poses(1,:));
rangesLine = helperViz.plotScan(gca, poses(1,:), ...
    NaN(numReadings,1), ones(numReadings,1));
axesColors = get(gca, 'ColorOrder');
routeLine = helperViz.plotRoute(gca, route, axesColors(2,:));
traveledLine = plot(gca, NaN, NaN);
title('Forklift Route to Package')
hold off

idx = 1;
tic;
while idx <= size(poses,1)
    % Insert range finder readings into map.
    [ranges, angles] = rangefinder(poses(idx,:), map);
    insertRay(estMap, poses(idx,:), ranges, angles, ...
        rangefinder.Range(end));
    
    % Update visualization.
    show(estMap, 'FastUpdate', true);
    helperViz.updateWorldMap(robotPatch, rangesLine, traveledLine, ...
        poses(idx,:), ranges, angles)
    drawnow
    
    % Regenerate route when obstacles are detected in the current one.
    isRouteOccupied = any(checkOccupancy(estMap, poses(:,1:2)));
    if isRouteOccupied && (toc > 0.5)
        % Calculate new route.
        planner.StateValidator.Map = estMap;
        route = plan(planner, poses(idx,:), packagePickupLocation);
        route = route.States;
        
        % Get poses from the route.
        startPoses = route(1:end-1,:);
        endPoses = route(2:end,:);
        rsPathSegs = connect(rsConn, startPoses, endPoses);
        poses = [];
        for i = 1:numel(rsPathSegs)
            lengths = 0:0.1:rsPathSegs{i}.Length;
            [pose, ~] = interpolate(rsPathSegs{i}, lengths);
            poses = [poses; pose]; %#ok<AGROW>
        end
        
        routeLine = helperViz.updateRoute(routeLine, route);
        idx = 1;
        tic;
    else
        idx = idx + 1;
    end
end
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Highway Lane Change
This example shows how to simulate an automated lane change maneuver system for highway driving
scenario.

Introduction

An automated lane change maneuver (LCM) system enables the ego vehicle to automatically move
from one lane to another lane. The LCM system models the longitudinal and lateral control dynamics
for automated lane change. An LCM system senses the environment for most important objects
(MIOs) using on-board sensors, identifies an optimal trajectory that avoids these objects, and steers
ego vehicle along this trajectory.

This example shows how to design and test the planner and controller components of an LCM system.
In this example, the lane change planner uses ground truth information from the scenario to detect
MIOs. It then generates a feasible trajectory to negotiate a lane change that is executed by the lane
change controller. In this example, you:

1 Explore the test bench model: The model contains planning, controls, vehicle dynamics,
sensors, and metrics to assess functionality.

2 Model the lane change planner: The reference model contains a simple behavior layer and a
motion planner. The behavior layer configures the motion planner to generate an optimal
trajectory by considering MIO information.

3 Model the lane change controller: The reference model generates control commands for the
ego vehicle based on the generated trajectory.

4 Simulate and visualize system behavior: The test bench model is configured to test the
integration of planning and controls to perform lane change maneuver on a straight road with
multiple vehicles.

5 Explore other scenarios: These scenarios test the system under additional conditions.

You can apply the modeling patterns used in this example to test your own planner and controller
components of an LCM system.

Explore Test Bench Model

In this example, you use a system-level simulation test bench model to explore the behavior of the
planner and controller components for a lane change maneuver system. Open the system-level
simulation test bench model.

open_system('HighwayLaneChangeTestBench')
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Opening this model runs the helperSLHighwayLaneChangeSetup script that initializes the road
scenario using the drivingScenario (Automated Driving Toolbox) object in the base workspace. It
also configures the controller design parameters, vehicle model parameters, and the Simulink® bus
signals required for defining the inputs and outputs for the HighwayLaneChangeTestBench model.

The test bench model contains the following subsystems.

1 Sensors and Environment specifies the road, vehicles, and sensors used for simulation.
2 Lane Change Planner specifies behavior and trajectory planning for the ego vehicle.
3 Lane Change Controller specifies the path following controller that generates control

commands to steer the ego vehicle along the generated trajectory.
4 Vehicle Dynamics models the ego-vehicle using a Bicycle Model (Automated Driving Toolbox)

and updates its state using commands received from the Lane Change Controller.
5 Metrics Assessment specifies metrics to assess system level behavior.

The Vehicle Dynamics subsystem is based on the subsystem used in the “Highway Lane Following”
(Automated Driving Toolbox) example. This example focuses on the Lane Change Planner and Lane
Change Controller reference models.

The Sensors and Environment subsystem uses Scenario Reader (Automated Driving Toolbox) and
Vision Detection Generator (Automated Driving Toolbox) blocks to provide the road network, vehicle
ground truth positions, and lane detections required for the lane change maneuver system. Open the
Sensors and Environment subsystem. This subsystem also outputs the reference path required by
the lane change planner.

open_system('HighwayLaneChangeTestBench/Sensors and Environment')
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The Scenario Reader (Automated Driving Toolbox) block is configured to read the drivingScenario
(Automated Driving Toolbox) object from the base workspace. It uses this object to read the actor
data and lane information. It takes in ego vehicle information to perform a closed-loop simulation.
This block outputs ground truth information of lanes and actors in ego vehicle coordinates.

The Vision Detection Generator (Automated Driving Toolbox) block provides lane detections with
respect to the ego vehicle which help in identifying vehicles present in the ego lane and adjacent
lanes.

The Lane Change Planner reference model uses lane detections from the Vision Detection
Generator (Automated Driving Toolbox) block and ground-truth actor or vehicle poses from the
Scenario Reader (Automated Driving Toolbox) to perform trajectory planning for the automated lane
change maneuver.

Model Lane Change Planner

The Lane Change Planner reference model uses a Simple Behavior Layer to configure the
Motion Planner. Motion Planner is responsible for generating the trajectory for a lane change
maneuver. Open the Lane Change Planner reference model.

open_system('LaneChangePlanner')
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1 The Find MIOs subsystem finds the most important objects with respect to the current state of
the ego vehicle.

2 The Simple Behavior Layer subsystem specifies the planner behavior for the Motion planner.
3 The Motion Planner reference model uses trajectoryOptimalFrenet and MIO information

to perform trajectory planning.

The Find MIOs subsystem uses ground-truth vehicle poses to compute MIO information with respect
to the ego vehicle. The vehicles present in the front or rear of the ego vehicle are considered as
MIOs. The MIOs can also be in adjacent lanes as shown in the following figure.
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The Simple Behavior Layer subsystem configures planner behavior by computing the terminal
states, weights, and deviation values using the current ego vehicle state information. Open the
Simple Behavior Layer subsystem.

open_system('LaneChangePlanner/Simple Behavior Layer')
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• The EstimateCurrentEgoState block uses a System object™,
HelperEstimateCurrentEgoState, to compute the lateral and longitudinal positions of the ego
vehicle. This computation is done in Frenet space using the current state of the ego vehicle and
lane detections. It also computes information about adjacent lane availability (NoLeftLane,
NoRightLane) with respect to ego vehicle position and deviation offset from the reference path.

• The LongitudinalSampler block defines the longitudinal planning horizon, as shown in the
following figure. It configures the possible longitudinal terminal state for defining the planner
behavior based on the distance to the input longitudinal position. The input longitudinal position is
calculated based on the distance to the goal point.
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• The LateralSampler block defines the lateral planning horizon, as shown in the following figure.
It configures the possible lateral terminal states for defining the planner behavior based on
adjacent lane availability (NoLeftLane, NoRightLane).
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• The VelocitySampler block configures the possible velocity terminal states for defining the
planner behavior. It is set to a default configuration in this model.

• The AccelerationSampler block configures the possible acceleration terminal states for defining
the planner behavior. It is set to a default configuration in this model.

• The Weights bus defines the attributes that can be configured to vary the trajectory profile
generated by the planner. These are set to default values in this model.

The Motion Planner reference model generates a trajectory by using the planner behavior, scenario
information, and MIO information. Open the Motion Planner reference model.

 Highway Lane Change

1-263



open_system('MotionPlanner')

• The Pulse Generator block defines a re-plan period for the Trajectory Generator block. The
default value is set to 1 second.

• The Trajectory Generator block generates an optimal trajectory based on MIOs, the reference
path, and the specified planner behavior. This block uses a system object,
HelperTrajectoryGenerator, to generate the required trajectory. This System object is
implemented using trajectoryOptimalFrenet. It uses MIO information updated using a state
validator. Multiple trajectory samples are validated for dynamic collision using the state validator
and the optimal trajectory is identified.
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• The Extract States block extracts path information from the generated trajectory.

• The Path Analyzer block estimates the heading angle and finds the appropriate point on the path
to follow. The generated path must conform to the road shape. This reference point on the path is
used by the Lane Change Controller reference model.

Model Lane Change Controller

The Lane Change Controller reference model simulates a path following control mechanism that
keeps the ego vehicle traveling along the generated trajectory while tracking a set velocity. To do so,
the controller adjusts both the longitudinal acceleration and front steering angle of the ego vehicle.
The controller computes optimal control actions while satisfying velocity, acceleration, and steering
angle constraints using adaptive model predictive control (MPC). Open the Lane Change Controller
reference model.

open_system('LaneChangeController')
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• The Virtual Lane Center subsystem creates a virtual lane from the path point. The virtual lane
matches the format required by the Path Following Controller block.

• The Preview Curvature subsystem converts trajectory to curvature input required by Path
Following Controller.

• The Path Following Controller block uses the Path Following Control System (Model Predictive
Control Toolbox) block from the Model Predictive Control Toolbox™.

The Path Following Controller block keeps the vehicle traveling within a marked lane of a highway
while maintaining a user-set velocity. This controller includes combined longitudinal and lateral
control of the ego vehicle:

• Longitudinal control maintains a user-set velocity of the ego vehicle.
• Lateral control keeps the ego vehicle traveling along the center line of its lane by adjusting the

steering of the ego vehicle.

Explore Metrics Assessment

The Metrics Assessment subsystem assesses system level behavior of the LCM system using the
metrics mentioned below. Open the Metrics Assessment subsystem.

open_system('HighwayLaneChangeTestBench/Metrics Assessment')
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• The DetectCollision block detects the collision of the ego vehicle with other vehicles and halts
the simulation if a collision is detected.

• The DetectLeadVehicle block computes the headway between the ego and lead vehicles, which is
used for computing the TimeGap.

• The TimeGap is calculated using the distance to the lead vehicle (headway) and the longitudinal
velocity of the ego vehicle, and it is evaluated against prescribed limits.

• The LongitudinalJerk is calculated using the longitudinal velocity and evaluated against
prescribed limits.

• The LateralJerk value is calculated using the lateral velocity evaluated against prescribed limits.

Simulate and Visualize System Behavior

Set up and run the HighwayLaneChangeTestBench simulation model to visualize the behavior of
the system during a lane change. The Visualization block in the model creates a bird's eye plot that
displays the lane information, ego vehicle, ego trajectory, and other vehicles in the scenario.
Configure the HighwayLaneChangeTestBench model to use
scenario_LC_06_DoubleLaneChange scenario.

helperSLHighwayLaneChangeSetup("scenario_LC_06_DoubleLaneChange")

Simulate the model for 5 seconds. To reduce command-window output, first turn off the MPC update
messages.
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mpcverbosity('off');
sim("HighwayLaneChangeTestBench","StopTime","5");
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Run the simulation for 8 seconds. A trajectory is calculated to navigate around a slower lead vehicle.

sim("HighwayLaneChangeTestBench","StopTime","8");
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Run the simulation for 13 seconds. The vehicle continues straight ahead in the left lane.

sim("HighwayLaneChangeTestBench","StopTime","13");
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Explore Other Scenarios

In the previous section, you explored the system behavior for the
scenario_LC_06_DoubleLaneChange scenario. Below is a list of scenarios that are compatible
with the HighwayLaneChangeTestBench model.

  scenario_LC_01_SlowMoving
  scenario_LC_02_SlowMovingWithPassingCar
  scenario_LC_03_DisabledCar
  scenario_LC_04_CutInWithBrake
  scenario_LC_05_SingleLaneChange
  scenario_LC_06_DoubleLaneChange [Default]
  scenario_LC_07_RightLaneChange
  scenario_LC_08_SlowmovingCar_Curved
  scenario_LC_09_CutInWithBreak_Curved
  scenario_LC_10_SingleLaneChange_Curved

These scenarios are created using the Driving Scenario Designer (Automated Driving Toolbox) and
are exported to a scenario file. Examine the comments in each file for more details on the road and
vehicles in each scenario. You can configure the HighwayLaneChangeTestBench and workspace to
simulate these scenarios using the helperSLHighwayLaneChangeSetup function. For example, you
can configure the simulation for a curved road scenario.

helperSLHighwayLaneChangeSetup("scenario_LC_10_SingleLaneChange_Curved")

Conclusion

This example shows how to simulate a highway lane change maneuver using ideal vehicle positions
and lane detections.

Enable the MPC update messages again.

mpcverbosity('on');
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Path Following with Obstacle Avoidance in Simulink®
This example shows you how to use Simulink to avoid obstacles while following a path for a
differential drive robot. This example uses ROS to send and receive information from a MATLAB®-
based simulator. You can replace the simulator with other ROS-based simulators such as Gazebo®.

Prerequisites: “Connect to a ROS-enabled Robot from Simulink®” (ROS Toolbox)

Introduction

This example uses a model that implements a path following controller with obstacle avoidance. The
controller receives the robot pose and laser scan data from the simulated robot and sends velocity
commands to drive the robot on a given path. You can adjust parameters while the model is running
and observe the effect on the simulated robot.

Start a Robot Simulator

Start a simple MATLAB-based simulator:

• Type rosinit (ROS Toolbox) at the MATLAB command line. This creates a local ROS master with
network address (URI) of http://localhost:11311.

• Type ExampleHelperSimulinkRobotROS('ObstacleAvoidance') to start the Robot
Simulator. This opens a figure window:

This MATLAB-based simulator is a ROS-based simulator for a differential-drive robot. The simulator
receives and sends messages on the following topics:
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• It receives velocity commands, as messages of type geometry_msgs/Twist, on the /
mobile_base/commands/velocity topic

• It sends ground truth robot pose information, as messages of type nav_msgs/Odometry, to the /
ground_truth_pose topic

• It sends laser range data, as messages of type sensor_msgs/LaserScan, to the /scan topic

Replacing the MATLAB-based simulator with Gazebo:

You can also use Gazebo simulator with a simulated TurtleBot®. See “Get Started with Gazebo and a
Simulated TurtleBot” (ROS Toolbox) for instructions on setting up the Gazebo environment. See
“Connect to a ROS-enabled Robot from Simulink®” (ROS Toolbox) for instructions on setting up
network connection with Gazebo. After starting the virtual machine, launch Gazebo Office world
using the desktop shortcut. The simulated Turtlebot in the Gazebo simulator, receives velocity
commands, as messages of type geometry_msgs/Twist, on the /cmd_vel topic. You also need a
localization algorithm to get robot position in the Gazebo. See “Localize TurtleBot Using Monte Carlo
Localization” on page 1-159 for instructions on finding robot location in Gazebo environment.

Open Existing Model

This model implements the path following with obstacle avoidance algorithm. The model is divided
into four subsystems. The following sections explain each subsystem.

open_system('pathFollowingWithObstacleAvoidanceExample');

Process Inputs

The 'Inputs' subsystem processes all the inputs to the algorithm.

There are two subscribers to receive data from the simulator. The first subscriber receives messages
sent on the /scan topic. The laser scan message is then processed to extract scan ranges and angles.
The second subscriber receives messages sent on the /ground_truth_pose topic. The (x,y)
location and Yaw orientation of the robot is then extracted from the pose message.

The path is specified as a set of waypoints. This example uses a 3x2 constant input. You can specify
any number of waypoints as an Nx2 array. To change the size of the path at run-time, you can either
use a variable sized signal or use a fixed size signal with NaN padding. This example uses a fixed size
input with NaN padding for the waypoints that are unknown.

open_system('pathFollowingWithObstacleAvoidanceExample/Inputs','tab');

Compute Velocity and Heading for Path Following

The 'Compute Velocity and Heading for Path Following' subsystem computes the linear and angular
velocity commands and the target moving direction using the Pure Pursuit block. The Pure Pursuit
block is located in the Mobile Robot Algorithms sub-library within the Robotics System Toolbox
tab in the Library Browser. Alternatively, you can type robotalgslib on the command-line to open
the Mobile Robot Algorithms sub-library.

You also need to stop the robot once it reaches a goal point. In this example, the goal is the last
waypoint on the path. This subsystem also compares the current robot pose and the goal point to
determine if the robot is close to the goal.

open_system('pathFollowingWithObstacleAvoidanceExample/Compute Velocity and Heading for Path following','tab');

Adjust Velocities to Avoid Obstacles
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The 'Adjust Velocities to Avoid Obstacles' subsystem computes adjustments to the linear and angular
velocities computed by the path follower.

The Vector Field Histogram block uses the laser range readings to check if the target direction
computed using the Pure Pursuit block is obstacle-free or not based on the laser scan data. If there
are obstacles along the target direction, the Vector Field Histogram block computes a steering
direction that is closest to the target direction and is obstacle-free. The Vector Field Histogram block
is also located in the Mobile Robot Algorithms sub-library.

The steering direction is NaN value when there are no obstacle-free directions in the sensor field of
view. In this case, a recovery motion is required, where the robot turns on-the-spot until an obstacle-
free direction is available.

Based on the steering direction, this subsystem computes adjustments in linear and angular
velocities.

open_system('pathFollowingWithObstacleAvoidanceExample/Adjust Velocities to Avoid Obstacles','tab');

Send Velocity Commands

The 'Outputs' subsystem publishes the linear and angular velocities to drive the simulated robot. It
adds the velocities computed using the Pure Pursuit path following algorithm with the adjustments
computed using the Vector Field Histogram obstacle avoidance algorithm. The final velocities are set
on the geometry_msgs/Twist message and published on the topic /mobile_base/commands/
velocity.

This is an enabled subsystem which is triggered when new laser message is received. This means a
velocity command is published only when a new sensor information is available. This prevents the
robot from hitting the obstacles in case of delay in receiving sensor information.

open_system('pathFollowingWithObstacleAvoidanceExample/Outputs','tab');

Note: To use Gazebo simulator, select the /cmd_vel topic in the Publish block.

Configure and Run the Model

Configure and run your model and observe the motion of the robot in the simulator.

• Set simulation Stop time to Inf.
• Click the Play button to start simulation. Observe that the robot starts moving in the simulation.
• While the simulation is running, open 'Compute Velocity and Heading for Path Following'

subsystem and double-click on the Pure Pursuit block. Change the desired linear velocity
parameter to 0.5. Observe increase in the velocity of the robot.

• The default path [2 2; 8 8] passes through an obstacle. Observe that the robot takes a detour
around the obstacle to reach the end point of the path.

• Open the 'Inputs' subsystem and double-click on the Waypoints Input block. Change the constant
value from [2 2;8 8;NaN NaN] to [2 2; 8 8; 12 5]. Notice that robot continues to follow
the new path and reaches the new goal point (12,5) while avoiding obstacles.

• To stop the simulation, click the Stop button.
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See Also

• “Generate a Standalone ROS Node from Simulink®” (ROS Toolbox)
• “Path Planning in Environments of Different Complexity” (Robotics System Toolbox)
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Obstacle Avoidance with TurtleBot and VFH
This example shows how to use ROS Toolbox and a TurtleBot® with vector field histograms (VFH) to
perform obstacle avoidance when driving a robot in an environment. The robot wanders by driving
forward until obstacles get in the way. The controllerVFH object computes steering directions to
avoid objects while trying to drive forward.

Optional: If you do not already have a TurtleBot (simulated or real) set up, install a virtual machine
with the Gazebo simulator and TurtleBot package. See “Get Started with Gazebo and a Simulated
TurtleBot” (ROS Toolbox) to install and set up a TurtleBot in Gazebo.

Connect to the TurtleBot using the IP address obtained from setup.

rosinit('192.168.233.133',11311)

Initializing global node /matlab_global_node_90736 with NodeURI http://192.168.233.1:61063/

Create a publisher and subscriber to share information with the VFH class. The subscriber receives
the laser scan data from the robot. The publisher sends velocity commands to the robot.

The topics used are for the simulated TurtleBot. Adjust the topic names for your specific robot.

laserSub = rossubscriber('/scan');
[velPub,velMsg] = rospublisher('/mobile_base/commands/velocity');

Set up VFH object for obstacle avoidance. Set the UseLidarScan property to true. Specify
algorithm properties for robot specifications. Set target direction to 0 in order to drive straight.

vfh = controllerVFH;
vfh.UseLidarScan = true;
vfh.DistanceLimits = [0.05 1];
vfh.RobotRadius = 0.1;
vfh.MinTurningRadius = 0.2;
vfh.SafetyDistance = 0.1;

targetDir = 0;

Set up a Rate object using rateControl, which can track the timing of your loop. This object can be
used to control the rate the loop operates as well.

rate = rateControl(10);

Create a loop that collects data, calculates steering direction, and drives the robot. Set a loop time of
30 seconds.

Use the ROS subscriber to collect laser scan data. Create a lidarScan object by specifying the
ranges and angles. Calculate the steering direction with the VFH object based on the input laser scan
data. Convert the steering direction to a desired linear and an angular velocity. If a steering direction
is not found, the robot stops and searches by rotating in place.

Drive the robot by sending a message containing the angular velocity and the desired linear velocity
using the ROS publisher.

while rate.TotalElapsedTime < 30

    % Get laser scan data
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    laserScan = receive(laserSub);
    ranges = double(laserScan.Ranges);
    angles = double(laserScan.readScanAngles);
 
    % Create a lidarScan object from the ranges and angles
        scan = lidarScan(ranges,angles);
        
    % Call VFH object to computer steering direction
    steerDir = vfh(scan, targetDir);  
    
    % Calculate velocities
    if ~isnan(steerDir) % If steering direction is valid
        desiredV = 0.2;
        w = exampleHelperComputeAngularVelocity(steerDir, 1);
    else % Stop and search for valid direction
        desiredV = 0.0;
        w = 0.5;
    end

    % Assign and send velocity commands
    velMsg.Linear.X = desiredV;
    velMsg.Angular.Z = w;
    velPub.send(velMsg);
end

This code shows how you can use the Navigation Toolbox™ algorithms to control robots and react to
dynamic changes in their environment. Currently the loop ends after 30 seconds, but other conditions
can be set to exit the loop based on information on the ROS network (i.e. robot position or number of
laser scan messages).

Disconnect from the ROS network

rosshutdown

Shutting down global node /matlab_global_node_90736 with NodeURI http://192.168.233.1:61063/
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Highway Trajectory Planning Using Frenet Reference Path
This example demonstrates how to plan a local trajectory in a highway driving scenario. This example
uses a reference path and dynamic list of obstacles to generate alternative trajectories for an ego
vehicle. The ego vehicle navigates through traffic defined in a provided driving scenario from a
drivingScenario object. The vehicle alternates between adaptive cruise control, lane changing,
and vehicle following maneuvers based on cost, feasibility, and collision-free motion.

Load Driving Scenario

Begin by loading the provided drivingScenario object, which defines the vehicle and road
properties in the current workspace. This scenario was generated using the Driving Scenario
Designer (Automated Driving Toolbox) app and exported to a MATLAB® function,
drivingScenarioTrafficExample. For more information, see “Create Driving Scenario Variations
Programmatically” (Automated Driving Toolbox).

scenario = drivingScenarioTrafficExample;
% Default car properties
carLen   = 4.7; % in meters
carWidth = 1.8; % in meters
rearAxleRatio = .25;

% Define road dimensions
laneWidth   = carWidth*2; % in meters

plot(scenario);
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Construct Reference Path

All of the local planning in this example is performed with respect to a reference path, represented by
a referencePathFrenet object. This object can return the state of the curve at given lengths along
the path, find the closest point along the path to some global xy-location, and facilitates the
coordinate transformations between global and Frenet reference frames.

For this example, the reference path is treated as the center of a four-lane highway, and the
waypoints match the road defined in the provided drivingScenario object.

waypoints = [0 50; 150 50; 300 75; 310 75; 400 0; 300 -50; 290 -50; 0 -50]; % in meters
refPath = referencePathFrenet(waypoints);
ax = show(refPath);
axis(ax,'equal');
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Construct Trajectory Generator

For a local planner, the goal is typically to sample a variety of possible motions that move towards a
final objective while satisfying the current kinematic and dynamic conditions. The
trajectoryGeneratorFrenet object accomplishes this by connecting the initial state with a set of
terminal states using 4th- or 5th-order polynomial trajectories. Initial and terminal states are defined
in the Frenet coordinate system, and each polynomial solution satisfies the lateral and longitudinal
position, velocity, and acceleration boundary conditions while minimizing jerk.

Terminal states are often calculated using custom behaviors. These behaviors leverage information
found in the local environment, such as the lane information, speed limit, and current or future
predictions of actors in the ego vehicle's vicinity.

Construct a trajectoryGeneratorFrenet object using the reference path

connector = trajectoryGeneratorFrenet(refPath);

Construct Dynamic Collision Checker

The dynamicCapsuleList object is a data structure that represents the state of a dynamic
environment over a discrete set of timesteps. This environment can then be used to efficiently
validate multiple potential trajectories for the ego vehicle. Each object in the scene is represented by:

• Unique integer-valued identifier
• Properties for a capsule geometry used for efficient collision checking
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• Sequence of SE2 states, where each state represents a discrete snapshot in time.

In this example, the trajectories generated by the trajectoryGeneratorFrenet object occur over
some span of time, known as the time horizon. To ensure that collision checking covers all possible
trajectories, the dynamicCapsuleList object should contain predicted trajectories of all actors
spanning the maximum expected time horizon.

capList = dynamicCapsuleList;

Create a geometry structure for the ego vehicle with the given parameters.

egoID = 1;
[egoID, egoGeom] = egoGeometry(capList,egoID);

egoGeom.Geometry.Length = carLen; % in meters
egoGeom.Geometry.Radius = carWidth/2; % in meters
egoGeom.Geometry.FixedTransform(1,end) = -carLen*rearAxleRatio; % in meters

Add the ego vehicle to the dynamic capsule list.

updateEgoGeometry(capList,egoID,egoGeom);

Add the drivingScenario actors to the dynamicCapsuleList object. The geometry is set here,
and the states are defined during the planning loop. You can see that the dynamicCapsuleList now
contains one ego vehicle and five obstacles.

actorID = (1:5)';
actorGeom = repelem(egoGeom,5,1);
updateObstacleGeometry(capList,actorID,actorGeom)

ans = 
  dynamicCapsuleList with properties:

     MaxNumSteps: 31
          EgoIDs: 1
     ObstacleIDs: [5x1 double]
    NumObstacles: 5
         NumEgos: 1

Planning Adaptive Routes Through Traffic

The planning utilities support a local planning strategy that samples a set of local trajectories based
on the current and foreseen state of the environment before choosing the most optimal trajectory.
The simulation loop has been organized into the following sections:

1 Advance the Ground Truth Scenario on page 1-0
2 Generate Terminal States on page 1-0
3 Evaluate Cost of Terminal States on page 1-0
4 Generate Trajectories and Check for Kinematic Feasibility on page 1-0
5 Check Trajectories for Collision and Select the Optimal Trajectory on page 1-0
6 Display the Sampled Trajectories and Animate Scene on page 1-0

Click the titles of each section to navigate to the relevant code in the simulation loop.
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Advance Ground Truth Scenario on page 1-0

When planning in a dynamic environment, it is often necessary to estimate the state of the
environment or predict its state in the near future. For simplicity, this example uses the
drivingScenario as a ground truth source of trajectories for each actor over the planning horizon.
To test a custom prediction algorithm, you can replace or modify the
exampleHelperRetrieveActorGroundTruth function with custom code.

Generate Terminal States on page 1-0

A common goal in automated driving is to ensure that planned trajectories are not just feasible but
also natural. Typical highway driving involves elements of lane keeping, maintaining the speed limit,
changing lanes, adapting speed to traffic, and so on. Each custom behavior might require different
environment information. This example demonstrates how to generate terminal states that implement
three such behaviors: cruise control, lane changes, and follow lead vehicle.

Cruise control

The exampleHelperBasicCruiseControl function generates terminal states that carry out a
cruise control behavior. This function uses the ego vehicle's lateral velocity and a time horizon to
predict the ego vehicle's expected lane N-seconds in the future. The lane-center is calculated and
becomes the terminal state's lateral deviation, and the lateral velocity and acceleration are set to
zero.

For longitudinal boundary conditions, the terminal velocity is set to the road speed limit and the
terminal acceleration is set to zero. The longitudinal position is unrestricted, which is specified as
NaN. By dropping the longitude constraint, trajectoryGeneratorFrenet can use a lower 4th-
order polynomial to solve the longitudinal boundary-value problem, resulting in a trajectory that
smoothly matches the road speed over the given time horizon:

cruiseControlState = NaN ṡdes 0 lexpLane 0 0

Lane change

The exampleHelperBasicLaneChange function generates terminal states that transition the
vehicle from the current lane to either adjacent lane. The function first determines the ego vehicle's
current lane, and then checks whether the left and right lanes exist. For each existing lane, the
terminal state is defined in the same manner as the cruise control behavior, with the exception that
the terminal velocity is set to the current velocity rather than the road's speed limit:

laneChangeState = NaN ṡcur  0 ldesLane 0 0

Follow lead vehicle

The exampleHelperBasicLeadVehicleFollow function generates terminal states that attempt to
trail a vehicle found ahead of the ego vehicle. The function first determines the ego vehicle's current
lane. For each provided timeHorizon, the function predicts the future state of each actor, finds all
actors that occupy the same lane as the ego vehicle, and determines which is the closest lead vehicle
(if no lead vehicles are found, the function does not return anything).

The ego vehicle's terminal state is calculated by taking the lead vehicle's position and velocity and
reducing the terminal longitudinal position by some safety distance:

closestLeadVehicleState = slead ṡlead 0 llead  l̇ lead 0
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followState = slead− dsafety  ṡlead 0 llead  l̇ lead 0

Evaluate Cost of Terminal States on page 1-0

After the terminal states have been generated, their cost can be evaluated. Trajectory evaluation and
the ways to prioritize potential solutions is highly subjective. For the sake of simplicity, the
exampleHelperEvaluateTSCost function defines cost as the combination of three weighted sums.

• Lateral Deviation Cost (ClatDev) — A positive weight that penalizes states that deviate from the
center of a lane.

ClatDev = wΔL*ΔL

ΔL = argmini LtermState − Llanei

• Time Cost (Ctime) — A negative weight that prioritizes motions that occur over a longer interval,
resulting in smoother trajectories.

Ctime = wΔt*Δt

• Terminal Velocity Cost (Cspeed) — A positive weight that prioritizes motions that maintain the
speed limit, resulting in less dynamic maneuvers.

Cspeed = wΔv*Δv

Generate Trajectories and Check for Kinematic Feasibility on page 1-0

In addition to having terminal states with minimal cost, an optimal trajectory must often satisfy
additional constraints related to kinematic feasibility and ride comfort. Trajectory constraints are one
way of enforcing a desired ride quality, but they do so at the expense of a reduced driving envelope.

In this example, the exampleHelperEvaluateTrajectory function verifies that each trajectory
satisfies the following constraints:

• MaxAcceleration: The absolute acceleration throughout the trajectory must be below a
specified value. Smaller values reduce driving aggressiveness and eliminate kinematically
infeasible trajectories. This restriction may eliminate maneuvers that could otherwise be
performed by the vehicle.

• MaxCurvature: The minimum turning radius that is allowed throughout a trajectory. As with
MaxAcceleration, reducing this value results in a smoother driving experience but may
eliminate otherwise feasible trajectories.

• MinVelocity: This example constrains the ego vehicle to forward-only motion by setting a
minimum velocity. This restriction is desired in highway driving scenarios and eliminates
trajectories that fit overconstrained or poorly conditioned boundary values.

Check Trajectories for Collision and Select Optimal Trajectory on page 1-0

The final step in the planning process is choosing the best trajectory that also results in a collision-
free path. Collision checking is often deferred until the end because it is an expensive operation, so
by evaluating cost and analyzing constraints first, invalid trajectories can be removed from
consideration. Remaining trajectories can then be checked for collision in optimal order until a
collision free path has been found or all trajectories have been evaluated.
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Define Simulator and Planning Parameters

This section defines the properties required to run the simulator and parameters that are used by the
planner and behavior utilities. Properties such as scenario.SampleTime and
connector.TimeResolution are synced so that states in the ground truth actor trajectories and
planned ego trajectories occur at the same timesteps. Similarly, replanRate, timeHorizons, and
maxHorizon are chosen such that they are integer multiples of the simulation rate.

As mentioned in the previous section, weights and constraints are selected to promote smooth driving
trajectories while adhering to the rules of the road.

Lastly, define the speedLimit and safetyGap parameters, which are used to generate terminal
states for the planner.

% Synchronize the simulator's update rate to match the trajectory generator's
% discretization interval.
scenario.SampleTime = connector.TimeResolution; % in seconds

% Define planning parameters.
replanRate = 10; % Hz

% Define the time intervals between current and planned states.
timeHorizons = 1:3; % in seconds
maxHorizon = max(timeHorizons); % in seconds

% Define cost parameters.
latDevWeight    =  1;
timeWeight      = -1;
speedWeight     =  1;

% Reject trajectories that violate the following constraints.
maxAcceleration =  15; % in meters/second^2
maxCurvature    =   1; % 1/meters, or radians/meter
minVelocity     =   0; % in meters/second

% Desired velocity setpoint, used by the cruise control behavior and when
% evaluating the cost of trajectories.
speedLimit = 11; % in meters/second

% Minimum distance the planner should target for following behavior.
safetyGap = 10; % in meters

Initialize Simulator

Initialize the simulator and create a chasePlot (Automated Driving Toolbox) viewer.

[scenarioViewer,futureTrajectory,actorID,actorPoses,egoID,egoPoses,stepPerUpdate,egoState,isRunning,lineHandles] = ...
    exampleHelperInitializeSimulator(scenario,capList,refPath,laneWidth,replanRate,carLen);
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Run Driving Simulation

tic
while isRunning
    % Retrieve the current state of actor vehicles and their trajectory over
    % the planning horizon.
    [curActorState,futureTrajectory,isRunning] = ...
        exampleHelperRetrieveActorGroundTruth(scenario,futureTrajectory,replanRate,maxHorizon);

    % Generate cruise control states.
    [termStatesCC,timesCC] = exampleHelperBasicCruiseControl(...
        refPath,laneWidth,egoState,speedLimit,timeHorizons);
    
    % Generate lane change states.
    [termStatesLC,timesLC] = exampleHelperBasicLaneChange(...
        refPath,laneWidth,egoState,timeHorizons);
    
    % Generate vehicle following states.
    [termStatesF,timesF] = exampleHelperBasicLeadVehicleFollow(...
        refPath,laneWidth,safetyGap,egoState,curActorState,timeHorizons);

    % Combine the terminal states and times.
    allTS = [termStatesCC; termStatesLC; termStatesF];
    allDT = [timesCC; timesLC; timesF];
    numTS = [numel(timesCC); numel(timesLC); numel(timesF)];
    
    % Evaluate cost of all terminal states.
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    costTS = exampleHelperEvaluateTSCost(allTS,allDT,laneWidth,speedLimit,...
        speedWeight, latDevWeight, timeWeight);

    % Generate trajectories.
    egoFrenetState = global2frenet(refPath,egoState);
    [frenetTraj,globalTraj] = connect(connector,egoFrenetState,allTS,allDT);
    
    % Eliminate trajectories that violate constraints.
    isValid = exampleHelperEvaluateTrajectory(globalTraj,maxAcceleration,maxCurvature,minVelocity);

    % Update the collision checker with the predicted trajectories
    % of all actors in the scene.
    for i = 1:numel(actorPoses)
        actorPoses(i).States = futureTrajectory(i).Trajectory(:,1:3);
    end
    updateObstaclePose(capList,actorID,actorPoses);
    
    % Determine evaluation order.
    [cost, idx] = sort(costTS);
    optimalTrajectory = [];
    
    trajectoryEvaluation = nan(numel(isValid),1);
    
    % Check each trajectory for collisions starting with least cost.
    for i = 1:numel(idx)
        if isValid(idx(i))
            % Update capsule list with the ego object's candidate trajectory.
            egoPoses.States = globalTraj(idx(i)).Trajectory(:,1:3);
            updateEgoPose(capList,egoID,egoPoses);
            
            % Check for collisions.
            isColliding = checkCollision(capList);
            
            if all(~isColliding)
                % If no collisions are found, this is the optimal.
                % trajectory.
                trajectoryEvaluation(idx(i)) = 1;
                optimalTrajectory = globalTraj(idx(i)).Trajectory;
                break;
            else
                trajectoryEvaluation(idx(i)) = 0;
            end
        end
    end

    % Display the sampled trajectories.
    lineHandles = exampleHelperVisualizeScene(lineHandles,globalTraj,isValid,trajectoryEvaluation);

 Highway Trajectory Planning Using Frenet Reference Path

1-289



    
    hold on;
    show(capList,'TimeStep',1:capList.MaxNumSteps,'FastUpdate',1);
    hold off;
    
    if isempty(optimalTrajectory)
        % All trajectories either violated a constraint or resulted in collision.
        %
        %   If planning failed immediately, revisit the simulator, planner,
        %   and behavior properties.
        %
        %   If the planner failed midway through a simulation, additional
        %   behaviors can be introduced to handle more complicated planning conditions.
        error('No valid trajectory has been found.');
    else
        % Visualize the scene between replanning.
        for i = (2+(0:(stepPerUpdate-1)))
            % Approximate realtime visualization.
            dt = toc;
            if scenario.SampleTime-dt > 0
                pause(scenario.SampleTime-dt);
            end
            
            egoState = optimalTrajectory(i,:);
            scenarioViewer.Actors(1).Position(1:2) = egoState(1:2);
            scenarioViewer.Actors(1).Velocity(1:2) = [cos(egoState(3)) sin(egoState(3))]*egoState(5);
            scenarioViewer.Actors(1).Yaw = egoState(3)*180/pi;
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            scenarioViewer.Actors(1).AngularVelocity(3) = egoState(4)*egoState(5);
            
            % Update capsule visualization.
            hold on;
            show(capList,'TimeStep',i:capList.MaxNumSteps,'FastUpdate',1);
            hold off;
            
            % Update driving scenario.
            advance(scenarioViewer);
            ax = gca;
            ax.ZLim = [-100 100];
            tic;
        end
    end
end

Planner Customizations and Additional Considerations

Custom solutions often involve many tunable parameters, each capable of changing the final behavior
in ways that are difficult to predict. This section highlights some of the feature-specific properties and
their effect on the above planner. Then, suggestions provide ways to tune or augment the custom
logic.

Dynamic Capsule List

As mentioned previously, the dynamicCapsuleList object acts as a temporal database, which
caches predicted trajectories of obstacles. You can perform collision checking with one or more ego
bodies over some span of time. The MaxNumSteps property determines the total number of time-
steps that are checked by the object. In the above simulation loop, the property was set to 31. This
value means the planner checks the entire 1-3 second span of any trajectories (sampled at every 0.1
second). Now, increase the maximum value in timeHorizons:

timeHorizons   = 1:5; % in seconds
maxTimeHorizon = max(timeHorizons); % in seconds

There are now two options:

1 The MaxNumSteps property is left unchanged.
2 The MaxNumSteps property is updated to accommodate the new max timespan.

If the property is left unchanged, then the capsule list only validates the first 3 seconds of any
trajectory, which may be preferable if computational efficiency is paramount or the prediction
certainty drops off quickly.

Alternatively, one may be working with ground truth data (as is shown above), or the future state of
the environment is well known (e.g. a fully automated environment with centralized control). Since
this example uses ground truth data for the actors, update the property.

capList.MaxNumSteps = 1+floor(maxTimeHorizon/scenario.SampleTime);

Another, indirectly tunable, property of the list is the capsule geometry. The geometry of the ego
vehicle or actors can be inflated by increasing the Radius, and buffer regions can be added to
vehicles by modifying the Length and FixedTransform properties.

Inflate the ego vehicle's entire footprint by increasing the radius.
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egoGeom.Geometry.Radius = laneWidth/2; % in meters
updateEgoGeometry(capList,egoID,egoGeom);

Add a front and rear buffer region to all actors.

actorGeom(1).Geometry.Length = carLen*1.5; % in meters
actorGeom(1).Geometry.FixedTransform(1,end) = -actorGeom(1).Geometry.Length*rearAxleRatio; % in meters
actorGeom = repmat(actorGeom(1),5,1);
updateObstacleGeometry(capList,actorID,actorGeom);

Rerun Simulation With Updated Properties

Rerun the simulation. The resulting simulation has a few interesting developments:

• The longer five-second time horizon results in a much smoother driving experience. The planner
still prioritizes the longer trajectories due to the negative timeWeight.

• The updated MaxNumSteps property has enabled collision checking over the full trajectory. When
paired with the longer planning horizon, the planner identifies and discards the previously optimal
left-lane change and returns to the original lane.

• The inflated capsules find a collision earlier and reject a trajectory, which results in more
conservative driving behavior. One potential drawback to this is a reduced planning envelope,
which runs the risk of the planner not being able to find a valid trajectory.

% Initialize the simulator and create a chasePlot viewer.
[scenarioViewer,futureTrajectory,actorID,actorPoses,egoID,egoPoses,stepPerUpdate,egoState,isRunning,lineHandles] = ...
    exampleHelperInitializeSimulator(scenario,capList,refPath,laneWidth,replanRate,carLen);
tic;
while isRunning
    % Retrieve the current state of actor vehicles and their trajectory over
    % the planning horizon.
    [curActorState,futureTrajectory,isRunning] = exampleHelperRetrieveActorGroundTruth(...
        scenario,futureTrajectory,replanRate,maxHorizon);
    
    % Generate cruise control states.
    [termStatesCC,timesCC] = exampleHelperBasicCruiseControl(...
        refPath,laneWidth,egoState,speedLimit,timeHorizons);
    
    % Generate lane change states.
    [termStatesLC,timesLC] = exampleHelperBasicLaneChange(...
        refPath,laneWidth,egoState,timeHorizons);
    
    % Generate vehicle following states.
    [termStatesF,timesF] = exampleHelperBasicLeadVehicleFollow(...
        refPath,laneWidth,safetyGap,egoState,curActorState,timeHorizons);
    
    % Combine the terminal states and times.
    allTS = [termStatesCC; termStatesLC; termStatesF];
    allDT = [timesCC; timesLC; timesF];
    numTS = [numel(timesCC); numel(timesLC); numel(timesF)];
    
    % Evaluate cost of all terminal states.
    costTS = exampleHelperEvaluateTSCost(allTS,allDT,laneWidth,speedLimit, ...
        speedWeight,latDevWeight,timeWeight);
    
    % Generate trajectories.
    egoFrenetState = global2frenet(refPath,egoState);
    [frenetTraj,globalTraj] = connect(connector,egoFrenetState,allTS,allDT);
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    % Eliminate trajectories that violate constraints.
    isValid = exampleHelperEvaluateTrajectory(...
        globalTraj, maxAcceleration, maxCurvature, minVelocity);
    
    % Update the collision checker with the predicted trajectories
    % of all actors in the scene.
    for i = 1:numel(actorPoses)
        actorPoses(i).States = futureTrajectory(i).Trajectory(:,1:3);
    end
    updateObstaclePose(capList, actorID, actorPoses);
    
    % Determine evaluation order.
    [cost, idx] = sort(costTS);
    optimalTrajectory = [];
    
    trajectoryEvaluation = nan(numel(isValid),1);
    
    % Check each trajectory for collisions starting with least cost.
    for i = 1:numel(idx)
        if isValid(idx(i))
            % Update capsule list with the ego object's candidate trajectory.
            egoPoses.States = globalTraj(idx(i)).Trajectory(:,1:3);
            updateEgoPose(capList, egoID, egoPoses);
            
            % Check for collisions.
            isColliding = checkCollision(capList);
            
            if all(~isColliding)
                % If no collisions are found, this is the optimal
                % trajectory.
                trajectoryEvaluation(idx(i)) = 1;
                optimalTrajectory = globalTraj(idx(i)).Trajectory;
                break;
            else
                trajectoryEvaluation(idx(i)) = 0;
            end
        end
    end
    
    % Display the sampled trajectories.
    lineHandles = exampleHelperVisualizeScene(lineHandles, globalTraj, isValid, trajectoryEvaluation);
    
    if isempty(optimalTrajectory)
        % All trajectories either violated a constraint or resulted in collision.
        %
        %   If planning failed immediately, revisit the simulator, planner,
        %   and behavior properties.
        %
        %   If the planner failed midway through a simulation, additional
        %   behaviors can be introduced to handle more complicated planning conditions.
        error('No valid trajectory has been found.');
    else
        % Visualize the scene between replanning.
        for i = (2+(0:(stepPerUpdate-1)))
            % Approximate realtime visualization.
            dt = toc;
            if scenario.SampleTime-dt > 0
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                pause(scenario.SampleTime-dt);
            end
            
            egoState = optimalTrajectory(i,:);
            scenarioViewer.Actors(1).Position(1:2) = egoState(1:2);
            scenarioViewer.Actors(1).Velocity(1:2) = [cos(egoState(3)) sin(egoState(3))]*egoState(5);
            scenarioViewer.Actors(1).Yaw = egoState(3)*180/pi;
            scenarioViewer.Actors(1).AngularVelocity(3) = egoState(4)*egoState(5);
            
            % Update capsule visualization.
            hold on;
            show(capList,'TimeStep',i:capList.MaxNumSteps,'FastUpdate',1);
            hold off;
            
            % Update driving scenario.
            advance(scenarioViewer);
            ax = gca;
            ax.ZLim = [-100 100];
            tic;
        end
    end
end
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Optimal Trajectory Generation for Urban Driving
This example shows how to perform dynamic replanning in an urban scenario using
trajectoryOptimalFrenet.

In this example, you will:

1 Explore an urban scenario with predefined vehicles.
2 Use trajectoryOptimalFrenet to do local planning for navigating the Urban scenario.

Contents

• Introduction on page 1-0
• Explore an Urban Scenario for Local planning on page 1-0
• Use trajectoryOptimalFrenet to demonstrate Adaptive Cruise Control (ACC) behavior on page 1-

0
• Use trajectoryOptimalFrenet to negotiate a smooth turn on page 1-0
• Use trajectoryOptimalFrenet to perform Lane Change maneuver on page 1-0
• Conclusion on page 1-0

Introduction

Automated driving in an urban scenario needs planning on two levels, global and local. The global
planner finds the most feasible path between start and goal points. The local planner does dynamic
replanning to generate an optimal trajectory based on the global plan and the surrounding
information. In this example, an ego vehicle (green box) follows a global plan (dotted blue line). Local
planning is done (solid orange line) while trying to avoid another vehicle (black rectangle).
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Local planners use obstacle information to generate optimal collision-free trajectories. Obstacle
information from various on-board sensors like camera, radar, and lidar are fused to keep the
occupancy map updated. This occupancy map is egocentric, where the local frame is centered on the
ego vehicle. The map is used for local planning when obstacles are detected from the sensors and
placed on the map.

Explore An Urban Scenario For Local Planning

This example scenario has four other vehicles (blue rectangles), which are moving in predefined
paths at different velocities. The figure below illustrates this scenario and the global plan (solid red
line) used in this example. Solid red dots in the below figure represent the waypoints of the global
plan between the start and goal positions. The green rectangle represents the ego vehicle.

The ego vehicle uses trajectoryOptimalFrenet to navigate from position A to position D in three
segments with three different configuration parameters.

• First (A to B), the vehicle demonstrates Adaptive Cruise Control (ACC) behavior.
• Second (B to C), the vehicle negotiates a turn to follow the global plan.
• Third (C to D), the vehicle performs a lane change maneuver.

Set up the required data and environment variables:
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% Load data from urbanScenarioData.mat file, initialize required variables
[otherVehicles,globalPlanPoints,stateValidator] = exampleHelperUrbanSetup;

1 otherVehicles: [1 x 4] Structure array containing fields: Position, Yaw, Velocity, and
SimulationTime, of each vehicle in the scenario.

2 globalPlanPoints: [18 x 2] Matrix contains precomputed global plan consisting of eighteen
waypoints, each representing a position in the scenario.

3 stateValidator: validatorOccupancyMap object that acts as the state validator based on a
given 2-D grip map. A fully occupied egocentric occupancy map is updated based on obstacle
information and road boundaries. A custom state validator can also be used based on the
application. For more information, see nav.StateValidator.

Plot the scenario.

exampleHelperPlotUrbanScenario;

Create local planner

Specify the state validator and global plan to create a local planner using
trajectoryOptimalFrenet.
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localPlanner = trajectoryOptimalFrenet(globalPlanPoints,stateValidator);

Explore properties of localPlanner

The localPlanner has a variety of properties that can be tuned to achieve the desired behavior.
This section explores some of these properties and their default values.

localPlanner.TerminalStates

• Longitudinal: [30 45 60 75 90]: Defines longitudinal sampling distance in meters. This
value can be a scalar or vector.

• Lateral: [-2 -1 0 1 2]: Defines lateral deviation in meters from the reference path (Global
plan in our case).

• Time: 7: Time in seconds to reach the end of trajectory.
• Speed: 10: Velocity in meters per second, to be achieved at the end of the trajectory
• Acceleration: 0: Acceleration at the end of the trajectory in m/s^2.

localPlanner.FeasibilityParameters

• MaxCurvature: 0.1 : Maximum feasible value for the curvature in m^-1
• MaxAcceleration: 2.5: Maximum feasible acceleration in m/s^2.

localPlanner.TimeResolution: 0.1: Trajectory discretization interval in seconds

Use trajectoryOptimalFrenet to demonstrate Adaptive Cruise Control (ACC) behavior

In this section, assign the properties needed to configure localPlanner to demonstrate Adaptive
Cruise Control (ACC) behavior.

To demonstrate ACC, the ego vehicle needs to follow a lead vehicle by maintaining a safe distance.
The lead vehicle in this segment is fetched using otherVehicles(1).

% Get leadVehicle in segment from Postion A to Position B
leadVehicle = otherVehicles(1);

% Define ACC safe distance
ACCSafeDistance = 35; % in meters
% Adjusting the time resolution of planner object to make the ego vehicle
% travel smoothly
timeResolution = 0.01;
localPlanner.TimeResolution = timeResolution;

Set up the ego vehicle at position A and define its initial velocity and orientation (Yaw).

% Set positions A, B, C and D
positionA =  [5.1, -1.8, 0];
positionB =  [60, -1.8, 0];
positionC =  [74.45, -30.0, 0];
positionD =  [74.45, -135, 0];
goalPoint =  [145.70, -151.8, 0];

% Set the initial state of the ego vehicle
egoInitPose     = positionA;
egoInitVelocity = [10, -0.3, 0];
egoInitYaw      = -0.165;
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currentEgoState = [egoInitPose(1), egoInitPose(2), deg2rad(egoInitYaw),...
    0, norm(egoInitVelocity), 0];
vehicleLength = 4.7; % in meters
% Replan interval in number of simulation steps
% (default 50 simulation steps)
replanInterval = 50;

Visualize the simulation results.

% Initialize Visualization
exampleHelperInitializeVisualization;

The ACC behavior is achieved by setting the TerminalStates of localPlanner as below:

To maintain the safe distance from lead vehicle, set
localPlanner.TerminalStates.Longitudinal to Distance to Lead Vehicle - Vehicle Length;

To maintain relative velocity with respect to the lead vehicle, set
localPlanner.TerminalStates.Speed to Lead Vehicle Velocity;

To continue navigating on the global plan, set localPlanner.TerminalStates.Lateral to 0;

In the following code snippet, localPlanner generates trajectory that is executed and visualized
using exampleHelperUpdateVisualization for every simulation step. However, replanning is
done for every 50th simulation step. The following is the sequence of events during replanning:

• Update the occupancy map using vehicle information using
exampleHelperUpdateOccupancyMap.

• Update the localPlanner.TerminalStates.
• Trajectory generation using plan(localPlanner,currentStateInFrenet).

% Simulate till the ego vehicle reaches position B
simStep = 1;
% Check only for X as there is no change in Y.
while currentEgoState(1) <= positionB(1)
    
    % Replan at every "replanInterval"th simulation step
    if rem(simStep, replanInterval) == 0 || simStep == 1
        % Compute the replanning time
        previousReplanTime = simStep*timeResolution;
        
        % Updating occupancy map with vehicle information
        exampleHelperUpdateOccupancyMap(otherVehicles,simStep,currentEgoState);
        
        % Compute distance to Lead Vehicle and leadVehicleVelocity
        distanceToLeadVehicle = pdist2(leadVehicle.Position(simStep,1:2), ...
            currentEgoState(1:2));
        leadVehicleVelocity = leadVehicle.Velocity(simStep,:);
        
        % Set localPlanner.TerminalStates for ACC behavior
        if distanceToLeadVehicle <= ACCSafeDistance
            localPlanner.TerminalStates.Longitudinal = distanceToLeadVehicle - vehicleLength;
            localPlanner.TerminalStates.Speed = norm(leadVehicleVelocity);
            localPlanner.TerminalStates.Lateral = 0;
            desiredTimeBound = localPlanner.TerminalStates.Longitudinal/...
                localPlanner.TerminalStates.Speed;
            localPlanner.TerminalStates.Time = desiredTimeBound;
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            localPlanner.FeasibilityParameters.MaxCurvature = 0.5;
        end
        
        % Generate optimal trajectory for current set of parameters
        currentStateInFrenet = cart2frenet(localPlanner, [currentEgoState(1:5) 0]);
        trajectory = plan(localPlanner, currentStateInFrenet);
        
        % Visualize the ego-centric occupancy map
        show(egoMap,"Parent",hAxes1)
        title("Ego Centric Occupancy Map","Parent",hAxes1)
        
        % Visualize ego vehicle on occupancy map
        egoCenter = currentEgoState(1:2);
        egoPolygon = exampleHelperTransformPointtoPolygon(rad2deg(currentEgoState(3)), egoCenter);
        hold(hAxes1,"on")
        fill(egoPolygon(1, :),egoPolygon(2, :),"g","Parent",hAxes1)
        
        % Visualize the Trajectory reference path and trajectory
        show(localPlanner,"Trajectory","optimal","Parent",hAxes1)
    end
    
    % Execute and Update Visualization
    [isGoalReached, currentEgoState] = ...
        exampleHelperExecuteAndVisualize(currentEgoState,simStep,...
        trajectory,previousReplanTime);
    if(isGoalReached)
        break;
    end
    
    % Update the simulation step for the next iteration
    simStep = simStep + 1;
    pause(0.01);
end
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At the end of this execution, the ego vehicle is at position B.

Next, configure trajectoryOptimalFrenet for negotiating a turn in the second segment from
position B to position C.

Use trajectoryOptimalFrenet to Negotiate a Smooth Turn

The current set properties of the localPlanner are sufficient to negotiate a smooth turn. However,
in the second segment, the lead vehicle is fetched from otherVehicles(2).

% Set Lead Vehicle to correspond to the vehicle in second segment
% from position B to position C
leadVehicle = otherVehicles(2);

% Simulate till the ego vehicle reaches position C
% Check only for Y as there is no change in X at C
while currentEgoState(2) >= positionC(2)
    
    % Replan at every "replanInterval"th simulation step
    if rem(simStep, replanInterval) == 0
        % Compute the replanning time
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        previousReplanTime = simStep*timeResolution;
        
        % Updating occupancy map with vehicle information
        exampleHelperUpdateOccupancyMap(otherVehicles, simStep, currentEgoState);
        
        % Compute distance to Lead Vehicle and leadVehicleVelocity
        distanceToLeadVehicle = pdist2(leadVehicle.Position(simStep,1:2), ...
            currentEgoState(1:2));
        leadVehicleVelocity = leadVehicle.Velocity(simStep,:);
        
        if(distanceToLeadVehicle <= ACCSafeDistance)
            localPlanner.TerminalStates.Longitudinal = distanceToLeadVehicle - vehicleLength;
            localPlanner.TerminalStates.Speed = norm(leadVehicleVelocity);
            localPlanner.TerminalStates.Lateral = 0;
            desiredTimeBound = localPlanner.TerminalStates.Longitudinal/...
                localPlanner.TerminalStates.Speed;
            localPlanner.TerminalStates.Time = desiredTimeBound;
            localPlanner.FeasibilityParameters.MaxCurvature = 0.5;
            localPlanner.FeasibilityParameters.MaxAcceleration = 5;
        end
        
        % Generate optimal trajectory for current set of parameters
        currentStateInFrenet = cart2frenet(localPlanner, [currentEgoState(1:5) 0]);
        trajectory = plan(localPlanner, currentStateInFrenet);
        
        % Visualize the ego-centric occupancy map
        show(egoMap,"Parent",hAxes1)
        title("Ego Centric Occupancy Map","Parent",hAxes1)
        
        % Visualize ego vehicle on occupancy map
        egoCenter = currentEgoState(1:2);
        egoPolygon = exampleHelperTransformPointtoPolygon(rad2deg(currentEgoState(3)), egoCenter);
        hold(hAxes1,"on")
        fill(egoPolygon(1, :), egoPolygon(2, :), "g", "Parent", hAxes1)
        
        % Visualize the Trajectory reference path and trajectory
        show(localPlanner, "Trajectory", "optimal", "Parent", hAxes1)
    end
    
    % Execute and Update Visualization
    [isGoalReached, currentEgoState] = ...
        exampleHelperExecuteAndVisualize(currentEgoState,simStep,...
        trajectory,previousReplanTime);
    if(isGoalReached)
        break;
    end
    
    % Update the simulation step for the next iteration
    simStep = simStep + 1;
    pause(0.01);
end
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At the end of this execution, the ego vehicle is at position C.

Next, configure trajectoryOptimalFrenet for performing a lane change maneuver from position
C to position D.

Use trajectoryOptimalFrenet to perform Lane Change maneuver

Lane change maneuver can be performed by appropriately configuring the Lateral terminal states of
the planner. This can be achieved by setting the lateral terminal state to lane width (3.6m in this
example) and assuming the reference path is aligned to the center of the current ego lane.

% Simulate till the ego vehicle reaches position D
% Set Lane Width
laneWidth = 3.6;
% Check only for Y as there is no change in X at D
while currentEgoState(2) >= positionD(2)
    
    % Replan at every "replanInterval" simulation step
    if rem(simStep, replanInterval) == 0
        % Compute the replanning time
        previousReplanTime = simStep*timeResolution;
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        % Updating occupancy map with vehicle information
        exampleHelperUpdateOccupancyMap(otherVehicles,simStep,currentEgoState);
        
        % TerminalState settings for negotiating Lane change
        localPlanner.TerminalStates.Longitudinal = 20:5:40;
        localPlanner.TerminalStates.Lateral = laneWidth;
        localPlanner.TerminalStates.Speed = 10;
        desiredTimeBound = localPlanner.TerminalStates.Longitudinal/...
            ((currentEgoState(1,5) + localPlanner.TerminalStates.Speed)/2);
        localPlanner.TerminalStates.Time = desiredTimeBound;
        localPlanner.FeasibilityParameters.MaxCurvature = 0.5;
        localPlanner.FeasibilityParameters.MaxAcceleration = 15;
        
        % Generate optimal trajectory for current set of parameters
        currentStateInFrenet = cart2frenet(localPlanner,[currentEgoState(1:5) 0]);
        trajectory = plan(localPlanner,currentStateInFrenet);
        
        % Visualize the ego-centric occupancy map
        show(egoMap,"Parent",hAxes1)
        title("Ego Centric Occupancy Map","Parent",hAxes1)
        
        % Visualize ego vehicle on occupancy map
        egoCenter = currentEgoState(1:2);
        egoPolygon = exampleHelperTransformPointtoPolygon(rad2deg(currentEgoState(3)), egoCenter);
        hold(hAxes1,"on")
        fill(egoPolygon(1, :),egoPolygon(2, :),"g","Parent",hAxes1)
        
        % Visualize the Trajectory reference path and trajectory
        show(localPlanner,"Trajectory","optimal","Parent",hAxes1)
    end
    
    % Execute and Update Visualization
    [isGoalReached, currentEgoState] = ...
        exampleHelperExecuteAndVisualize(currentEgoState,simStep,...
        trajectory,previousReplanTime);
    if(isGoalReached)
        break;
    end
    
    % Update the simulation step for the next iteration
    simStep = simStep + 1;
    pause(0.01);
end
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Simulate ego vehicle execution to reach the goal point

The localPlanner is now configured to navigate from position D to the goal position.

% Simulate till the ego vehicle reaches Goal position
% Check only for X as there is no change in Y at Goal.
while currentEgoState(1) <= goalPoint(1)
    
    % Replan at every "replanInterval"th simulation step
    if rem(simStep, replanInterval) == 0
        % Compute the replanning time
        previousReplanTime = simStep*timeResolution;
        
        % Updating occupancy map with vehicle information
        exampleHelperUpdateOccupancyMap(otherVehicles, simStep, currentEgoState);
        localPlanner.TerminalStates.Longitudinal = 20;
        localPlanner.TerminalStates.Lateral = [-1 0 1];
        desiredTimeBound = localPlanner.TerminalStates.Longitudinal/...
            ((currentEgoState(1,5) + localPlanner.TerminalStates.Speed)/2);
        localPlanner.TerminalStates.Time = desiredTimeBound:0.2:desiredTimeBound+1;
        
        % Generate optimal trajectory for current set of parameters
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        currentStateInFrenet = cart2frenet(localPlanner, [currentEgoState(1:5) 0]);
        trajectory = plan(localPlanner, currentStateInFrenet);
        
        % Visualize the ego-centric occupancy map
        show(egoMap,"Parent",hAxes1)
        title("Ego Centric Occupancy Map","Parent",hAxes1)
        
        % Visualize ego vehicle on occupancy map
        egoCenter = currentEgoState(1:2);
        egoPolygon = exampleHelperTransformPointtoPolygon(rad2deg(currentEgoState(3)), egoCenter);
        hold(hAxes1,"on")
        fill(egoPolygon(1, :),egoPolygon(2, :),"g","Parent",hAxes1)
        
        % Visualize the Trajectory reference path and trajectory
        show(localPlanner,"Trajectory","optimal","Parent",hAxes1)
    end
    
    % Execute and Update Visualization
    [isGoalReached, currentEgoState] = ...
        exampleHelperExecuteAndVisualize(currentEgoState,simStep,...
        trajectory,previousReplanTime);
    % Goal reached will be true only in this section.
    if(isGoalReached)        
        break;
    end
    
    % Update the simulation step for the next iteration
    simStep = simStep + 1;
    pause(0.01);
end
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Log the ego vehicle positions in egoPoses variable that is available in the base workspace. You can
playback the vehicle path in DrivingScenario using exampleHelperPlayBackInDS(egoPoses).

% Clear workspace variables that were created during the example run.
% This excludes egoPoses to allow the user to playback the simulation in DS
exampleHelperUrbanCleanUp;

Conclusion

This example has explained how to perform dynamic re-planning in an urban scenario using
trajectoryOptimalFrenet. In particular, we have learned how to use
trajectoryOptimalFrenet to realize the following behavior.

• Adaptive Cruise Control
• Negotiating turns
• Lane Change Maneuver.
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Navigation Topics

• “Model IMU, GPS, and INS/GPS” on page 2-2
• “Choose Inertial Sensor Fusion Filters” on page 2-8
• “Configure Time Scope MATLAB Object” on page 2-12
• “Occupancy Grids” on page 2-32
• “Choose Path Planning Algorithms for Navigation” on page 2-40
• “Execute Code at a Fixed-Rate” on page 2-42
• “Particle Filter Workflow” on page 2-45
• “Particle Filter Parameters” on page 2-49
• “Pure Pursuit Controller” on page 2-54
• “Monte Carlo Localization Algorithm” on page 2-56
• “Vector Field Histogram” on page 2-65
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Model IMU, GPS, and INS/GPS
Navigation Toolbox enables you to model inertial measurement units (IMU), Global Positioning
Systems (GPS), and inertial navigation systems (INS). You can model specific hardware by setting
properties of your models to values from hardware datasheets. You can tune environmental and noise
properties to mimic real-world environments. You can use these models to test and validate your
fusion algorithms or as placeholders while developing larger applications.

This tutorial provides an overview of inertial sensor and GPS models in Navigation Toolbox.

To learn how to generate the ground-truth motion that drives the sensor models, see
waypointTrajectory and kinematicTrajectory.

Inertial Measurement Unit
An IMU is an electronic device mounted on a platform. The IMU consists of individual sensors that
report various information about the platform's motion. IMUs combine multiple sensors, which can
include accelerometers, gyroscopes, and magnetometers.

With this toolbox, measurements returned from an IMU model use the following unit and coordinate
conventions.

Output Description Units Coordinate System
Acceleration Current accelerometer

reading
m/s2 Sensor Body

2 Navigation Topics

2-2



Output Description Units Coordinate System
Angular velocity Current gyroscope

reading
rad/s Sensor Body

Magnetic field Current magnetometer
reading

μT Sensor Body

Usually, the data returned by IMUs is fused together and interpreted as roll, pitch, and yaw of the
platform. Real-world IMU sensors can have different axes for each of the individual sensors. The
models provided by Navigation Toolbox assume that the individual sensor axes are aligned.

To create an IMU sensor model, use the imuSensor System object™.

IMU = imuSensor

IMU = 

  imuSensor with properties:

          IMUType: 'accel-gyro'
       SampleRate: 100
      Temperature: 25
    Accelerometer: [1×1 accelparams]
        Gyroscope: [1×1 gyroparams]
     RandomStream: 'Global stream'

The default IMU model contains an ideal accelerometer and an ideal gyroscope. The accelparams
and gyroparams objects define the accelerometer and gyroscope configuration. You can set the
properties of these objects to mimic specific hardware and environments. For more information on
IMU parameter objects, see accelparams, gyroparams, and magparams.

To model receiving IMU sensor data, call the IMU model with the ground-truth acceleration and
angular velocity of the platform:
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trueAcceleration = [1 0 0];
trueAngularVelocity = [1 0 0];
[accelerometerReadings,gyroscopeReadings] = IMU(trueAcceleration,trueAngularVelocity)

accelerometerReadings =

   -1.0000         0    9.8100

gyroscopeReadings =

     1     0     0

You can generate the ground-truth trajectories that you input to the IMU model using
kinematicTrajectory and waypointTrajectory.

Global Positioning System
A global positioning system (GPS) provides 3-D position information for platforms (receivers) on the
surface of the Earth.

GPS consists of a constellation of satellites that continuously orbit the earth. The satellites maintain a
configuration such that a platform is always within view of at least four satellites. By measuring the
flight time of signals from the satellites to the platform, the position of the platform can be

2 Navigation Topics

2-4



trilaterated. Satellites timestamp a broadcast signal, which is compared to the platform's clock upon
receipt. Three satellites are required to trilaterate a position in three dimensions. The fourth satellite
is required to correct for clock synchronization errors between the platform and satellites.

The GPS simulation provided by Navigation Toolbox models the platform (receiver) data that has
already been processed and interpreted as altitude, latitude, longitude, velocity, groundspeed, and
course.

Measurements returned from the GPS model use the following unit and coordinate conventions.

Output Description Units Coordinate System
LLA Current global position

reading in geodetic
coordinates, based on
wgs84Ellipsoid Earth
model

degrees (latitude),
degrees (longitude),
meters (altitude)

LLA

Velocity Current velocity reading
from GPS

m/s local NED

Groundspeed Current groundspeed
reading from GPS

m/s local NED

Course Current course reading
from GPS

degrees local NED

The GPS model enables you to set high-level accuracy and noise parameters, as well as the receiver
update rate and a reference location.

To create a GPS model, use the gpsSensor System object.

GPS = gpsSensor

GPS = 

  gpsSensor with properties:

                    UpdateRate: 1                  Hz         
             ReferenceLocation: [0 0 0]            [deg deg m]
    HorizontalPositionAccuracy: 1.6                m          
      VerticalPositionAccuracy: 3                  m          
              VelocityAccuracy: 0.1                m/s        
                  RandomStream: 'Global stream'               
                   DecayFactor: 0.999    
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To model receiving GPS sensor data, call the GPS model with the ground-truth position and velocity
of the platform:

truePosition = [1 0 0];
trueVelocity = [1 0 0];
[LLA,velocity,groundspeed,course] = GPS(truePosition,trueVelocity)

LLA =

    0.0000    0.0000    0.3031

velocity =

    1.0919   -0.0008   -0.1308

groundspeed =

    1.0919

course =

  359.9566 

You can generate the ground-truth trajectories that you input to the GPS model using
kinematicTrajectory and waypointTrajectory.

Inertial Navigation System and Global Positioning System
An inertial navigation system (INS) uses inertial sensors like those found on an IMU: accelerometers,
gyroscopes, and magnetometers. An INS fuses the inertial sensor data to calculate position,
orientation, and velocity of a platform. An INS/GPS uses GPS data to correct the INS. Typically, the
INS and GPS readings are fused with an extended Kalman filter, where the INS readings are used in
the prediction step, and the GPS readings are used in the update step. A common use for INS/GPS is
dead-reckoning when the GPS signal is unreliable.

"INS/GPS" refers to the entire system, including the filtering. The INS/GPS simulation provided by
Navigation Toolbox models an INS/GPS and returns the position, velocity, and orientation reported by
the inertial sensors and GPS receiver based on a ground-truth motion.

Measurements returned from the INS/GPS use the following unit and coordinate conventions.

Output Description Units Coordinate System
Position Current position

reading from the
INS/GPS

meters local NED

Velocity Current velocity reading
from the INS/GPS

m/s local NED

Orientation Current orientation
reading from the
INS/GPS

quaternion or rotation
matrix

N/A
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See Also
gpsSensor | imuSensor

External Websites
• https://www.gps.gov/systems/gps/
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Choose Inertial Sensor Fusion Filters
The toolbox provides multiple filters to estimate the pose and velocity of platforms by using on-board
inertial sensors (including accelerometer, gyroscope, and altimeter), magnetometer, GPS, and visual
odometry measurements. Each filter can process certain types of measurements from certain sensors.
Each filter also makes assumptions and may have limitations that you should consider carefully
before applying it. For example, many filters assume no sustained linear or angular acceleration other
than the gravitational acceleration. Therefore, you should avoid using them during strong and
constant acceleration, but these filters can perform reasonably well during short linear acceleration
bursts. Also, some filters allow piecewise constant linear acceleration and angular velocity since they
allow acceleration and angular velocity inputs during the prediction step.

The internal algorithms of these filters also vary greatly. For example, the ecompass object uses the
TRIAD method to determine the orientation of the platform with very low computation cost. Many
filters (such as ahrsfilter and imufilter) adopt the error-state Kalman filter, in which the state
deviation from the reference state is estimated. Meanwhile, other filters (such as insfilterMARG
and insfilterAsync) use the extended Kalman filter approach, in which the state is estimated
directly.

To achieve high estimation accuracy, it is important to tune the filter properties and parameters
properly. The toolbox offers the built-in tune function to tune parameters and sensor noise for the
imufilter, ahrsfilter, and insfilterAsync directly.

The table lists the inputs, outputs, assumptions, and algorithms for all the inertial sensor fusion
filters.

Object Sensors and Inputs States and
Outputs

Assumptions or
Limitations

Algorithm Used

ecompass • Accelerometer
• Magnetometer

Orientation The filter assumes no
sustained linear and
angular acceleration
other than
gravitational
acceleration.

TRIAD method

ahrsfilter • Accelerometer
• Gyroscope
• Magnetometer

Orientation and
angular velocity

The filter assumes no
sustained linear and
angular acceleration
other than
gravitational
acceleration.

Error-state Kalman
filter

ahrs10filt
er

• Accelerometer
• Gyroscope
• Magnetometer
• Altimeter

Orientation, altitude,
vertical velocity,
delta angle bias,
delta velocity bias,
geomagnetic field
vector,
magnetometer bias

The filter assumes
piecewise constant
linear acceleration in
the vertical
direction, and no
sustained linear and
angular acceleration
other than
gravitational
acceleration in other
directions.

Discrete extended
Kalman filter
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Object Sensors and Inputs States and
Outputs

Assumptions or
Limitations

Algorithm Used

imufilter • Accelerometer
• Gyroscope

Orientation and
angular velocity

The filter assumes no
sustained linear and
angular acceleration
other than
gravitational
acceleration.

Error-state Kalman
filter

complement
aryFilter

• Accelerometer
• Gyroscope
• Magnetometer(op

tional)

Orientation and
angular velocity

The filter assumes no
sustained linear and
angular acceleration
other than
gravitational
acceleration.

Non-Kalman filter
based approach:

• Use high and low
pass filters to
reduce noise in
various sensor
readings.

• Fuse the filtered
sensor readings
based on their
assigned weights.

insfilterM
ARG

• Accelerometer
• Gyroscope
• Magnetometer
• GPS

Orientation, position,
velocity, delta angle
bias, delta velocity
bias, geomagnetic
field vector,
magnetometer bias

The prediction step
takes the
accelerometer and
gyroscope inputs.
Therefore, the filter
assumes:

• Piecewise
constant linear
acceleration.

• Piecewise
constant angular
velocity.

• Accelerometer
and gyroscope
run at the same
rate with no
sample dropping.

Discrete extended
Kalman filter
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Object Sensors and Inputs States and
Outputs

Assumptions or
Limitations

Algorithm Used

insfilterA
sync

• Accelerometer
• Gyroscope
• Magnetometer
• GPS

Orientation, angular
velocity, position,
velocity,
acceleration,
accelerometer bias,
gyroscope bias,
geomagnetic field
vector,
magnetometer bias

The filter assumes:

• Constant angular
velocity

• Constant
acceleration

The filter does not
require the sensors
to be synchronous
and each sensor can
have sample
dropping.

Continuous discrete
extended Kalman
Filter

insfilterN
onholonomi
c

• Accelerometer
• Gyroscope
• GPS

Orientation, position,
velocity, gyroscope
bias, accelerometer
bias

The prediction step
takes the
accelerometer and
gyroscope inputs.
Therefore, the filter
assumes:

• Piece-wise
constant linear
acceleration.

• Piece-wise
constant angular
velocity.

• Accelerometer
and gyroscope
run at the same
rate with no
sample dropping.

Also, the filter
assumes the
platform moves
forward without side
slip.

Discrete extended
Kalman Filter
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Object Sensors and Inputs States and
Outputs

Assumptions or
Limitations

Algorithm Used

insfilterE
rrorState

• Accelerometer
• Gyroscope
• Magnetometer
• GPS
• Visual odometry

scale

Orientation, position,
velocity, gyroscope
bias, accelerometer
bias, and visual
odometry scale

The prediction step
takes the
accelerometer and
gyroscope inputs.
Therefore, the filter
assumes:

• Piece-wise
constant linear
acceleration.

• Piece-wise
constant angular
velocity.

• Accelerometer
and gyroscope
run at the same
rate with no
sample dropping.

Error-state Kalman
filter

See Also
tunerconfig
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Configure Time Scope MATLAB Object
When you use the timescope object in MATLAB®, you can configure many settings and tools from
the window. These sections show you how to use the Time Scope interface and the available tools.

Signal Display
This figure highlights the important aspects of the Time Scope window in MATLAB.

• Min X-Axis — Time scope sets the minimum x-axis limit using the value of the property. To change

the Time Offset from the Time Scope window, click Settings ( ) on the Scope tab. Under
Data and Axes, set the Time Offset.

• Max X-Axis — Time scope sets the maximum x-axis limit by summing the value of the Time
Offset property with the span of the x-axis values. If Time Span is set to Auto, the span of x-axis
is 10/SampleRate.

The values on the x-axis of the scope display remain the same throughout the simulation.
• Status — Provides the current status of the plot. The status can be:

• Processing — Occurs after you run the object and before you run the release function.
• Stopped — Occurs after you create the scope object and before you first call the object. This

status also occurs after you call release.
• Title, YLabel — You can customize the title and the y-axis label from Settings or by using the

Title and YLabel properties.
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• Toolstrip

• Scope tab — Customize and share the time scope. For example, showing and hiding the legend
• Measurements tab — Turn on and control different measurement tools.
• Trigger tab — Turn on and modify triggers.

Use the pin button  to keep the toolstrip showing or the arrow button  to hide the toolstrip.

Multiple Signal Names and Colors
By default, if the input signal has multiple channels, the scope uses an index number to identify each
channel of that signal. For example, the legend for a two-channel signal will display the default names

Channel 1, Channel 2. To show the legend, on the Scope tab, click Settings ( ). Under Display
and Labels, select Show Legend. If there are a total of seven input channels, the legend displayed
is:

By default, the scope has a black axes background and chooses line colors for each channel in a
manner similar to the Simulink® Scope block. When the scope axes background is black, it assigns
each channel of each input signal a line color in the order shown in the legend. If there are more than
seven channels, then the scope repeats this order to assign line colors to the remaining channels.
When the axes background is not black, the signals are colored in this order:

To choose line colors or background colors, on the Scope tab click Settings.Use the Axes color
pallet to change the background of the plot. Click Line to choose a line to change, and the Color
drop-down to change the line color of the selected line.

Configure Scope Settings
On the Scope tab, the Configuration section allows you to modify the scope.

• The Legend button turns the legend on or off. When you show the legend, you can control which
signals are shown. If you click a signal name in the legend, the signal is hidden from the plot and
shown in grey on the legend. To redisplay the signal, click on the signal name again. This button
corresponds to the ShowLegend property in the object.
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• The Settings button opens the settings window which allows you to customize the data, axes,
display settings, labels, and color settings.

On the Scope tab, the Layout section allows you to modify the scope layout dimensions.

The Display Grid button enables you to select the display layout of the scope.

Use timescope Measurements and Triggers
All measurements are made for a specified channel. By default, measurements are applied to the first
channel. To change which channel is being measured, use the Select Channel drop-down on the
Measurements tab.

Data Cursors

Use the Data Cursors button to display screen cursors. Each cursor tracks a vertical line along the
signal. The difference between x- and y-values of the signal at the two cursors is displayed in the box
between the cursors.

Signal Statistics

Use the Signal Statistics button to display various statistics about the selected signal at the bottom
of the time scope window. You can hide or show the Statistics panel using the arrow button  in the
bottom right of the panel.

• Max — Maximum value within the displayed portion of the input signal.
• Min — Minimum value within the displayed portion of the input signal.
• Peak to Peak — Difference between the maximum and minimum values within the displayed

portion of the input signal.
• Mean — Average or mean of all the values within the displayed portion of the input signal.
• Median — Median value within the displayed portion of the input signal.
• RMS — Root mean squared of the input signal.

To customize which statistics are shown and computed, use the Signal Statistics drop-down.

2 Navigation Topics

2-14



Peak Finder

Use the Peak Finder button to display peak values for the selected signal. Peaks are defined as a
local maximum where lower values are present on both sides of a peak. End points are not considered
peaks. For more information on the algorithms used, see the findpeaks function.

When you turn on the peak finder measurements, an arrow appears on the plot at each maxima and a
Peaks panel appears at the bottom of the timescope window showing the x and y values at each
peak.

You can customize several peak finder settings:

• Num Peaks — The number of peaks to show. Must be a scalar integer from 1 through 99.
• Min Height — The minimum height difference between a peak and its neighboring samples.
• Min Distance — The minimum number of samples between adjacent peaks.
• Threshold — The level above which peaks are detected.
• Label Peaks — Show labels (P1, P2, …) above the arrows on the plot.

Bilevel Measurements

With bilevel measurements, you can measure transitions, aberrations, and cycles.

Bilevel Settings

When using bilevel measurements, you can set these properties:

• Auto State Level — When this check box is selected, the Bilevel measurements panel detects the
high- and low-state levels of a bilevel waveform. When this check box is cleared, you can enter in
values for the high- and low-state levels manually.

• High — Manually specify the value that denotes a positive polarity or high-state level.

• Low — Manually specify the value that denotes a negative polarity or low-state level.
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• State Level Tol. % — Tolerance levels within which the initial and final levels of each transition
must lie to be within their respective state levels. This value is expressed as a percentage of the
difference between the high- and low-state levels.

• Upper Ref Level — Used to compute the end of the rise-time measurement or the start of the fall-
time measurement. This value is expressed as a percentage of the difference between the high-
and low-state levels.

• Mid Ref Level — Used to determine when a transition occurs. This value is expressed as a
percentage of the difference between the high- and low-state levels. In the following figure, the
mid-reference level is shown as a horizontal line, and its corresponding mid-reference level instant
is shown as a vertical line.

• Lower Ref Level — Used to compute the end of the fall-time measurement or the start of the rise-
time measurement. This value is expressed as a percentage of the difference between the high-
and low-state levels.

• Settle Seek — The duration after the mid-reference level instant when each transition occurs is
used for computing a valid settling time. Settling time is displayed in the Aberrations pane.
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Transitions

Select Transitions to display calculated measurements associated with the input signal changing
between its two possible state level values, high and low. The measurements are displayed in the
Transitions pane at the bottom of the scope window.

The + Edges row measures rising edges or a positive-going transition. A rising edge in a bilevel
waveform is a transition from the low-state level to the high-state level with a slope value greater
than zero.

The - Edges row measures falling edges or a negative-going transition. A falling edge in a bilevel
waveform is a transition from the high-state level to the low-state level with a slope value less than
zero.

The Transition measurements assume that the amplitude of the input signal is in units of volts. For
the transition measurements to be valid, you must convert all input signals to volts.
Aberrations

Select Aberrations to display calculated measurements involving the distortion and damping of the
input signal such as preshoot, overshoot, and undershoot. Overshoot and undershoot, respectively,
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refer to the amount that a signal exceeds and falls below its final steady-state value. Preshoot refers
to the amount before a transition that a signal varies from its initial steady-state value. The
measurements are displayed in the Transitions pane at the bottom of the scope window.

This figure shows preshoot, overshoot, and undershoot for a rising-edge transition.

The next figure shows preshoot, overshoot, and undershoot for a falling-edge transition.

Cycles

Select Cycles calculates repetitions or trends in the displayed portion of the input signal. The
measurements are displayed in the Cycles pane at the bottom of the scope window in two rows: +
Pulses for the positive-polarity pulses and - Pulses for the negative-polarity pulses.
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• Period — Average duration between adjacent edges of identical polarity within the displayed
portion of the input signal. To calculate period, the timescope takes the difference between the
mid-reference level instants of the initial transition of each pulse and the next identical-polarity
transition. These mid-reference level instants for a positive-polarity pulse appear as red dots in the
following figure.

• Frequency — Reciprocal of the average period, measured in hertz.
• Count — Number of positive- or negative-polarity pulses counted.
• Width — Average duration between rising and falling edges of each pulse within the displayed

portion of the input signal.
• Duty Cycle — Average ratio of pulse width to pulse period for each pulse within the displayed

portion of the input signal.

Triggers

Define a trigger event to identify the simulation time of specified input signal characteristics. You can
use trigger events to stabilize periodic signals such as a sine wave or capture non-periodic signals
such as a pulse that occurs intermittently.

To define a trigger:

1 On the Trigger tab of the scope window, select the channel you want to trigger.
2 Specify when the display updates by selecting a triggering Mode.

• Auto — Display data from the last trigger event. If no event occurs after one time span,
display the last available data.

Normal — Display data from the last trigger event. If no event occurs, the display remains
blank.

• Once — Display data from the last trigger event and freeze the display. If no event occurs, the
display remains blank. Click the Rearm button to look for the next trigger event.

3 Select a triggering type, polarity, and any other properties. See the Trigger Properties table.
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4 Click Enable Trigger.

You can set the trigger position to specify the position of the time pointer along the y-axis. You can
also drag the time pointer to the left or right to adjust its position.
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Trigger Properties

Trigger Type Trigger Parameters
Edge — Trigger
when the signal
crosses a
threshold.

Polarity — Select the polarity for an edge-triggered signal.

• Rising — Trigger when the signal is increasing.

• Falling — Trigger when the signal value is decreasing.
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Trigger Type Trigger Parameters
• Either — Trigger when the signal is increasing or decreasing.

Level — Enter a threshold value for an edge-triggered signal. Auto level is 50%

Hysteresis — Enter a value for an edge-triggered signal. See “Hysteresis of
Trigger Signals” on page 2-29

Delay — Offset the trigger by a fixed delay in seconds.

Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.
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Trigger Type Trigger Parameters
Pulse Width —
Trigger when the
signal crosses a
low threshold and
a high threshold
twice within a
specified time.

Polarity — Select the polarity for a pulse width-triggered signal.

• Positive — Trigger on a positive-polarity pulse when the pulse crosses the
low threshold for a second time.

• Negative — Trigger on a negative-polarity pulse when the pulse crosses the
high threshold for a second time.

• Either — Trigger on both positive-polarity and negative-polarity pulses.

Note A glitch-trigger is a special type of a pulse width-trigger. A glitch-trigger
occurs for a pulse or spike whose duration is less than a specified amount. You
can implement a glitch-trigger by using a pulse-width-trigger and setting the
Max Width parameter to a small value.

High — Enter a high value for a pulse-width-triggered signal. Auto level is
90%.

Low — Enter a low value for a pulse-width-triggered signal. Auto level is 10%.

Min Width — Enter the minimum pulse width for a pulse-width-triggered
signal. Pulse width is measured between the first and second crossings of the
middle threshold.

Max Width — Enter the maximum pulse width for a pulse-width-triggered
signal.

Delay — Offset the trigger by a fixed delay in seconds.
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Trigger Type Trigger Parameters
Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.
Transition —
Trigger on the
rising or falling
edge of a signal
that crosses the
high and low levels
within a specified
time range.

Polarity — Select the polarity for a transition-triggered signal.

• Rise Time — Trigger on an increasing signal when the signal crosses the
high threshold.

• Fall Time — Trigger on a decreasing signal when the signal crosses the
low threshold.

• Either — Trigger on an increasing or decreasing signal.

High — Enter a high value for a transition-triggered signal. Auto level is 90%.

Low — Enter a low value for a transition-triggered signal. Auto level is 10%.

Min Time — Enter a minimum time duration for a transition-triggered signal.

Max Time — Enter a maximum time duration for a transition-triggered signal.

Delay — Offset the trigger by a fixed delay in seconds.

Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.
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Trigger Type Trigger Parameters
Runt— Trigger
when a signal
crosses a low
threshold or a high
threshold twice
within a specified
time.

Polarity — Select the polarity for a runt-triggered signal.

• Positive — Trigger on a positive-polarity pulse when the signal crosses the
low threshold a second time without crossing the high threshold.

• Negative — Trigger on a negative-polarity pulse.
• Either — Trigger on both positive-polarity and negative-polarity pulses.

High — Enter a high value for a runt-triggered signal. Auto level is 90%.

Low — Enter a low value for a runt-triggered signal. Auto level is 10%.

Min Width — Enter a minimum width for a runt-triggered signal. Pulse width is
measured between the first and second crossing of a threshold.

Max Width — Enter a maximum pulse width for a runt-triggered signal.

Delay — Offset the trigger by a fixed delay in seconds.

Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.
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Trigger Type Trigger Parameters
Window — Trigger
when a signal
stays within or
outside a region
defined by the high
and low thresholds
for a specified
time.

Polarity — Select the region for a window-triggered signal.

• Inside — Trigger when a signal leaves a region between the low and high
levels.

• Outside — Trigger when a signal enters a region between the low and high
levels.
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Trigger Type Trigger Parameters
• Either — Trigger when a signal leaves or enters a region between the low

and high levels.

High — Enter a high value for a window-triggered signal. Auto level is 90%.

Low — Enter a low value for a window-trigger signal. Auto level is 10%.

Min Time — Enter the minimum time duration for a window-triggered signal.

Max Time — Enter the maximum time duration for a window-triggered signal.

Delay — Offset the trigger by a fixed delay in seconds.

Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.
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Trigger Type Trigger Parameters
Timeout —
Trigger when a
signal stays above
or below a
threshold longer
than a specified
time

Polarity — Select the polarity for a timeout-triggered signal.

• Rising — Trigger when the signal does not cross the threshold from below.
For example, if you set Timeout to 7.50 seconds, the scope triggers 7.50
seconds after the signal crosses the threshold.

• Falling — Trigger when the signal does not cross the threshold from
above.

• Either — Trigger when the signal does not cross the threshold from either
direction

Level — Enter a threshold value for a timeout-triggered signal.

Hysteresis — Enter a value for a timeout-triggered signal. See “Hysteresis of
Trigger Signals” on page 2-29.

Timeout — Enter a time duration for a timeout-triggered signal.

Alternatively, a trigger event can occur when the signal stays within the
boundaries defined by the hysteresis for 7.50 seconds after the signal crosses
the threshold.
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Trigger Type Trigger Parameters

Delay — Offset the trigger by a fixed delay in seconds.

Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.

Hysteresis of Trigger Signals

Hysteresis — Specify the hysteresis or noise-reject value. This parameter is visible when you set
Type to Edge or Timeout. If the signal jitters inside this range and briefly crosses the trigger level,
the scope does not register an event. In the case of an edge trigger with rising polarity, the scope
ignores the times that a signal crosses the trigger level within the hysteresis region.
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You can reduce the hysteresis region size by decreasing the hysteresis value. In this example, if you
set the hysteresis value to 0.07, the scope also considers the second rising edge to be a trigger event.

Share or Save the Time Scope
If you want to save the time scope for future use or share it with others, use the buttons in the Share
section of the Scope tab.

• Generate Script — Generate a script to re-create your time scope with the same settings. An
editor window opens with the code required to re-create your timescope object.
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• Copy Display — Copy the display to your clipboard. You can paste the image in another program
to save or share it.

• Print — Opens a print dialog box from which you can print out the plot image.

Scale Axes
To scale the plot axes, you can use the mouse to pan around the axes and the scroll button on your
mouse to zoom in and out of the plot. Additionally, you can use the buttons that appear when you
hover over the plot window.

•
 — Maximize the axes, hiding all labels and insetting the axes values.

•
 — Zoom in on the plot.

•
 — Pan the plot.

•
 — Autoscale the axes to fit the shown data.

See Also
Objects
timescope
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Occupancy Grids
In this section...
“Overview” on page 2-32
“World, Grid, and Local Coordinates” on page 2-32
“Inflation of Coordinates” on page 2-33
“Log-Odds Representation of Probability Values” on page 2-37

Overview
Occupancy grids are used to represent a robot workspace as a discrete grid. Information about the
environment can be collected from sensors in real time or be loaded from prior knowledge. Laser
range finders, bump sensors, cameras, and depth sensors are commonly used to find obstacles in
your robot’s environment.

Occupancy grids are used in robotics algorithms such as path planning (see mobileRobotPRM or
plannerRRT). They are used in mapping applications for integrating sensor information in a discrete
map, in path planning for finding collision-free paths, and for localizing robots in a known
environment (see monteCarloLocalization or matchScans). You can create maps with different
sizes and resolutions to fit your specific application.

For 3-D occupancy maps, see occupancyMap3D.

For 2-D occupancy grids, there are two representations:

• Binary occupancy grid (see binaryOccupancyMap)
• Probability occupancy grid (see occupancyMap)

A binary occupancy grid uses true values to represent the occupied workspace (obstacles) and
false values to represent the free workspace. This grid shows where obstacles are and whether a
robot can move through that space. Use a binary occupancy grid if memory size is a factor in your
application.

A probability occupancy grid uses probability values to create a more detailed map representation.
This representation is the preferred method for using occupancy grids. This grid is commonly
referred to as simply an occupancy grid. Each cell in the occupancy grid has a value representing the
probability of the occupancy of that cell. Values close to 1 represent a high certainty that the cell
contains an obstacle. Values close to 0 represent certainty that the cell is not occupied and obstacle
free. The probabilistic values can give better fidelity of objects and improve performance of certain
algorithm applications.

Binary and probability occupancy grids share several properties and algorithm details. Grid and
world coordinates apply to both types of occupancy grids. The inflation function also applies to both
grids, but each grid implements it differently. The effects of the log-odds representation and
probability saturation apply to probability occupancy grids only.

World, Grid, and Local Coordinates
When working with occupancy grids in MATLAB, you can use either world, local, or grid coordinates.
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The absolute reference frame in which the robot operates is referred to as the world frame in the
occupancy grid. Most operations are performed in the world frame, and it is the default selection
when using MATLAB functions in this toolbox. World coordinates are used as an absolute coordinate
frame with a fixed origin, and points can be specified with any resolution. However, all locations are
converted to grid locations because of data storage and resolution limits on the map itself.

The local frame refers to the egocentric frame for a vehicle navigating the map. The
GridOriginInLocal and LocalOriginInWorld properties define the origin of the grid in local
coordinates and the relative location of the local frame in the world coordinates. You can adjust this
local frame using the move function. For an example using the local frame as an egocentric map to
emulate a vehicle moving around and sending local obstacles, see “Create Egocentric Occupancy
Maps Using Range Sensors” on page 1-194.

Grid coordinates define the actual resolution of the occupancy grid and the finite locations of
obstacles. The origin of grid coordinates is in the top-left corner of the grid, with the first location
having an index of (1,1). However, the GridLocationInWorld property of the occupancy grid in
MATLAB defines the bottom-left corner of the grid in world coordinates. When creating an occupancy
grid object, properties such as XWorldLimits and YWorldLimits are defined by the input width,
height, and resolution. This figure shows a visual representation of these properties and the
relation between world and grid coordinates.

Inflation of Coordinates
Both the binary and normal occupancy grids have an option for inflating obstacles. This inflation is
used to add a factor of safety on obstacles and create buffer zones between the robot and obstacle in
the environment. The inflate function of an occupancy grid object converts the specified radius to
the number of cells rounded up from the resolution*radius value. Each algorithm uses this cell
value separately to modify values around obstacles.

 Occupancy Grids

2-33



Binary Occupancy Grid

The inflate function takes each occupied cell and directly inflates it by adding occupied space
around each point. This basic inflation example illustrates how the radius value is used.

Inflate Obstacles in a Binary Occupancy Grid

This example shows how to create the map, set the obstacle locations and inflate it by a radius of 1m.
Extra plots on the figure help illustrate the inflation and shifting due to conversion to grid locations.

Create binary occupancy grid. Set occupancy of position [5,5].

map = binaryOccupancyMap(10,10,5);
setOccupancy(map,[5 5], 1);

Inflate occupied spaces on map by 1m.

inflate(map,1);
show(map)

Plot original location, converted grid position and draw the original circle. You can see from this plot,
that the grid center is [4.9 4.9], which is shifted from the [5 5] location. A 1m circle is drawn from
there and notice that any cells that touch this circle are marked as occupied. The figure is zoomed in
to the relevant area.

hold on
theta = linspace(0,2*pi);
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x = 4.9+cos(theta); % x circle coordinates
y = 4.9+sin(theta); % y circle coordinates
plot(5,5,'*b','MarkerSize',10) % Original location
plot(4.9,4.9,'xr','MarkerSize',10) % Grid location center
plot(x,y,'-r','LineWidth',2); % Circle of radius 1m.
axis([3.6 6 3.6 6])
ax = gca;
ax.XTick = [3.6:0.2:6];
ax.YTick = [3.6:0.2:6];
grid on
legend('Original Location','Grid Center','Inflation')

As you can see from the above figure, even cells that barely overlap with the inflation radius are
labeled as occupied.

Occupancy Grids

The inflate function uses the inflation radius to perform probabilistic inflation. Probabilistic
inflation acts as a local maximum operator and finds the highest probability values for nearby cells.
The inflate function uses this definition to inflate the higher probability values throughout the grid.
This inflation increases the size of any occupied locations and creates a buffer zone for robots to
navigate around obstacles. This example shows how the inflation works with a range of probability
values.
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Inflate Obstacles in an Occupancy Grid

This example shows how the inflate method performs probabilistic inflation on obstacles to inflate
their size and create a buffer zone for areas with a higher probability of obstacles.

Create a 10m x 10m empty map.

map = occupancyMap(10,10,10);

Update occupancy of world locations with specific values in pvalues.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

pvalues = [0.2 0.4 0.6 0.8 1];

updateOccupancy(map,[x y],pvalues)
figure
show(map)

Inflate occupied areas by a given radius. Larger occupancy values are written over smaller values.
You can copy your map beforehand to revert any unwanted changes.

savedMap = copy(map);
inflate(map,0.5)
figure
show(map)
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Log-Odds Representation of Probability Values
When using occupancy grids with probability values, the goal is to estimate the probability of
obstacle locations for use in real-time robotics applications. The occupancyMap class uses a log-odds
representation of the probability values for each cell. Each probability value is converted to a
corresponding log-odds value for internal storage. The value is converted back to probability when
accessed. This representation efficiently updates probability values with the fewest operations.
Therefore, you can quickly integrate sensor data into the map.

The log-odds representation uses the following equation:
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Note Log-odds values are stored as int16 values. This data type limits the resolution of probability
values to ±0.001 but greatly improves memory size and allows for creation of larger maps.

Probability Saturation

When updating an occupancy grid with observations using the log-odds representation, the values
have a range of –∞ to ∞. This range means if a robot observes a location such as a closed door
multiple times, the log-odds value for this location becomes unnecessarily high, or the value
probability gets saturated. If the door then opens, the robot needs to observe the door open many
times before the probability changes from occupied to free. In dynamic environments, you want the
map to react to changes to more accurately track dynamic objects.

To prevent this saturation, update the ProbabilitySaturation property, which limits the minimum
and maximum probability values allowed when incorporating multiple observations. This property is
an upper and lower bound on the log-odds values and enables the map to update quickly to changes
in the environment. The default minimum and maximum values of the saturation limits are [0.001
0.999]. For dynamic environments, the suggested values are at least [0.12 0.97]. Consider
modifying this range if the map does not update rapidly enough for multiple observations.

See Also
binaryOccupancyMap | occupancyMap | occupancyMap3D
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Related Examples
• “Create Egocentric Occupancy Maps Using Range Sensors” on page 1-194
• “Build Occupancy Map from Lidar Scans and Poses” on page 1-200
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Choose Path Planning Algorithms for Navigation
The Navigation Toolbox provides multiple path or motion planners to generate a sequence of valid
configurations that move an object from a start to an end goal. The toolbox supports both global and
local planners. Global planners typically require a map and define the overall state space. Local
planners typically take a globally planned path and adjust the path based on obstacles in the
environment. Planners check for collisions with the environment, connect and propagate states, and
use cost functions for optimality. The table below details the key differences between the different
planners and when to use a certain one.

Planner Type
and
Scope

Collision Checking State Connection
and Propagation

Benefits Used For

Grid-
Based A*
—
planner
AStarGr
id

Global
path
planner

Occupancy map
(validatorOccupanc
yMap)

Connection: XY
linear motion
primitives

Propagation: Not
supported

• Customizable cost
and heuristics

• Optimality if
heuristics are
consistent and
admissible

Omnidrive
robots

Hybrid A*
—
planner
HybridA
Star

Global
path
planner

Occupancy map
(validatorOccupanc
yMap or
validatorVehicleC
ostmap)

Connection:
Reeds-Shepp
motion primitive

Propagation:
Circular arc
motion primitive

• Differential
constraints for state
propagation

Nonholono
mic
vehicles
with a
minimum
turning
radius

Rapidly-
exploring
Random
Tree
(RRT) —
planner
RRT

Global
path
planner

General state validator Connection:
General state
space

Propagation: Not
supported

• Customizable Manipulat
ors,
omnidrive
robots,
vehicles
with a min
turning
radius

RRT* —
planner
RRTStar

Global
path
planner

General state validator Connection:
General state
space

Propagation: Not
supported

• Customizable
• Asymptotically

optimal

Manipulat
ors,
omnidrive
robots,
vehicles
with a min
turning
radius

Frenet
Trajector
y —
traject
oryOpti
malFren
et

Local
trajector
y
generato
r

General state validator Connection:Quint
ic polynomials or
clothoids

Propagation: Not
applicable

• Customizable
collision checking

• Self-defined
optimality

Ackerman
n type
vehicles
for
highway
driving
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See Also

Related Examples
• “Plan Mobile Robot Paths using RRT” on page 1-232
• “Dynamic Replanning on an Indoor Map” on page 1-250
• “Highway Lane Change” on page 1-256
• “Highway Trajectory Planning Using Frenet Reference Path” on page 1-281
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Execute Code at a Fixed-Rate
In this section...
“Introduction” on page 2-42
“Run Loop at Fixed Rate” on page 2-42
“Overrun Actions for Fixed Rate Execution” on page 2-42

Introduction
By executing code at constant intervals, you can accurately time and schedule tasks. Using a
rateControl object allows you to control the rate of your code execution. These examples show
different applications for the rateControl object including its uses with ROS and sending
commands for robot control.

Run Loop at Fixed Rate
Create a rate object that runs at 1 Hz.

r = rateControl(1);

Start a loop using the rateControl object inside to control the loop execution. Reset the object
prior to the loop execution to reset timer. Print the iteration and time elapsed.

reset(r)
for i = 1:10
    time = r.TotalElapsedTime;
    fprintf('Iteration: %d - Time Elapsed: %f\n',i,time)
    waitfor(r);
end

Iteration: 1 - Time Elapsed: 0.009784
Iteration: 2 - Time Elapsed: 1.000772
Iteration: 3 - Time Elapsed: 2.000627
Iteration: 4 - Time Elapsed: 3.000987
Iteration: 5 - Time Elapsed: 4.044617
Iteration: 6 - Time Elapsed: 5.000857
Iteration: 7 - Time Elapsed: 6.007045
Iteration: 8 - Time Elapsed: 7.000570
Iteration: 9 - Time Elapsed: 8.012785
Iteration: 10 - Time Elapsed: 9.002134

Each iteration executes at a 1-second interval.

Overrun Actions for Fixed Rate Execution
The rateControl object uses the OverrunAction property to decide how to handle code that takes
longer than the desired period to operate. The options are 'slip' (default) or 'drop'. This example
shows how the OverrunAction affects code execution.

Setup desired rate and loop time. slowFrames is an array of times when the loop should be stalled
longer than the desired rate.

2 Navigation Topics

2-42



desiredRate = 1;
loopTime = 20;
slowFrames = [3 7 12 18];

Create the Rate object and specify the OverrunAction property. 'slip' indicates that the
waitfor function will return immediately if the time for LastPeriod is greater than the
DesiredRate property.

rate = rateControl(desiredRate);
rate.OverrunAction = 'slip';

Reset Rate object and begin loop. This loop will execute at the desired rate until the loop time is
reached. When the TotalElapsedTime reaches a slow frame time, it will stall for longer than the
desired period.

reset(rate);

while rate.TotalElapsedTime < loopTime
    if ~isempty(find(slowFrames == floor(rate.TotalElapsedTime)))
        pause(desiredRate + 0.1)
    end
    waitfor(rate);
end

View statistics on the Rate object. Notice the number of periods.

stats = statistics(rate)

stats = struct with fields:
              Periods: [1x20 double]
           NumPeriods: 20
        AveragePeriod: 1.0241
    StandardDeviation: 0.0430
          NumOverruns: 4

Change the OverrunAction to 'drop'. 'drop' indicates that the waitfor function will return at
the next time step, even if the LastPeriod is greater than the DesiredRate property. This
effectively drops the iteration that was missed by the slower code execution.

rate.OverrunAction = 'drop';

Reset Rate object and begin loop.

reset(rate);

while rate.TotalElapsedTime < loopTime
    if ~isempty(find(slowFrames == floor(rate.TotalElapsedTime)))
        pause(1.1)
    end
    waitfor(rate);
end
stats2 = statistics(rate)

stats2 = struct with fields:
              Periods: [1x16 double]
           NumPeriods: 16
        AveragePeriod: 1.2501
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    StandardDeviation: 0.4408
          NumOverruns: 4

Using the 'drop' over run action resulted in 16 periods when the 'slip' resulted in 20 periods.
This difference is because the 'slip' did not wait until the next interval based on the desired rate.
Essentially, using 'slip' tries to keep the AveragePeriod property as close to the desired rate.
Using 'drop' ensures the code will execute at an even interval relative to DesiredRate with some
iterations being skipped.

See Also
rateControl | rosrate | waitfor
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Particle Filter Workflow
A particle filter is a recursive, Bayesian state estimator that uses discrete particles to approximate
the posterior distribution of the estimated state.

The particle filter algorithm computes the state estimate recursively and involves two steps:

• Prediction – The algorithm uses the previous state to predict the current state based on a given
system model.

• Correction – The algorithm uses the current sensor measurement to correct the state estimate.

The algorithm also periodically redistributes, or resamples, the particles in the state space to match
the posterior distribution of the estimated state.

The estimated state consists of all the state variables. Each particle represents a discrete state
hypothesis. The set of all particles is used to help determine the final state estimate.

You can apply the particle filter to arbitrary nonlinear system models. Process and measurement
noise can follow arbitrary non-Gaussian distributions.

To use the particle filter properly, you must specify parameters such as the number of particles, the
initial particle location, and the state estimation method. Also, if you have a specific motion and
sensor model, you specify these parameters in the state transition function and measurement
likelihood function, respectively. For more information, see “Particle Filter Parameters” on page 2-
49.

Follow this basic workflow to create and use a particle filter. This page details the estimation
workflow and shows an example of how to run a particle filter in a loop to continuously estimate
state.

Estimation Workflow
When using a particle filter, there is a required set of steps to create the particle filter and estimate
state. The prediction and correction steps are the main iteration steps for continuously estimating
state.
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Create Particle Filter

Create a stateEstimatorPF object.

Set Parameters of Nonlinear System

Modify these stateEstimatorPF parameters to fit for your specific system or application:

• StateTransitionFcn
• MeasurementLikelihoodFcn
• ResamplingPolicy
• ResamplingMethod
• StateEstimationMethod

Default values for these parameters are given for basic operation.

The StateTransitionFcn and MeasurementLikelihoodFcn functions define the system behavior
and measurement integration. They are vital for the particle filter to track accurately. For more
information, see “Particle Filter Parameters” on page 2-49.

Initialize Particles

Use the initialize function to set the number of particles and the initial state.

Sample Particles from a Distribution

You can sample the initial particle locations in two ways:

• Initial pose and covariance — If you have an idea of your initial state, it is recommended you
specify the initial pose and covariance. This specification helps to cluster particles closer to your
estimate so tracking is more effective from the start.

• State bounds — If you do not know your initial state, you can specify the possible limits of each
state variable. Particles are uniformly distributed across the state bounds for each variable.
Widely distributed particles are not as effective at tracking, because fewer particles are near the
actual state. Using state bounds usually requires more particles, computation time, and iterations
to converge to the actual state estimate.

Predict

Based on a specified state transition function, particles evolve to estimate the next state. Use
predict to execute the state transition function specified in the StateTransitionFcn property.

Get Measurement

The measurements collected from sensors are used in the next step to correct the current predicted
state.

Correct

Measurements are then used to adjust the predicted state and correct the estimate. Specify your
measurements using the correct function. correct uses the MeasurementLikelihoodFcn to
calculate the likelihood of sensor measurements for each particle. Resampling of particles is required
to update your estimation as the state changes in subsequent iterations. This step triggers
resampling based on the ResamplingMethod and ResamplingPolicy properties.
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Extract Best State Estimation

After calling correct, the best state estimate is automatically extracted based on the Weights of
each particle and the StateEstimationMethod property specified in the object. The best estimated
state and covariance is output by the correct function.

Resample Particles

This step is not separately called, but is executed when you call correct. Once your state has
changed enough, resample your particles based on the newest estimate. The correct method checks
the ResamplingPolicy for the triggering of particle resampling according to the current
distribution of particles and their weights. If resampling is not triggered, the same particles are used
for the next estimation. If your state does not vary by much or if your time step is low, you can call the
predict and correct methods without resampling.

Continuously Predict and Correct

Repeat the previous prediction and correction steps as needed for estimating state. The correction
step determines if resampling of the particles is required. Multiple calls for predict or correct
might be required when:

• No measurement is available but control inputs and time updates are occur at a high frequency.
Use the predict method to evolve the particles to get the updated predicted state more often.

• Multiple measurement reading are available. Use correct to integrate multiple readings from
the same or multiple sensors. The function corrects the state based on each set of information
collected.

See Also
correct | getStateEstimate | initialize | predict | stateEstimatorPF

Related Examples
• “Estimate Robot Position in a Loop Using Particle Filter”

More About
• “Particle Filter Parameters” on page 2-49
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Particle Filter Parameters
In this section...
“Number of Particles” on page 2-49
“Initial Particle Location” on page 2-50
“State Transition Function” on page 2-51
“Measurement Likelihood Function” on page 2-52
“Resampling Policy” on page 2-52
“State Estimation Method” on page 2-53

To use the stateEstimatorPF particle filter, you must specify parameters such as the number of
particles, the initial particle location, and the state estimation method. Also, if you have a specific
motion and sensor model, you specify these parameters in the state transition function and
measurement likelihood function, respectively. The details of these parameters are detailed on this
page. For more information on the particle filter workflow, see “Particle Filter Workflow” on page 2-
45.

Number of Particles
To specify the number of particles, use the initialize method. Each particle is a hypothesis of the
current state. The particles are distributed across your state space based on either a specified mean
and covariance, or on the specified state bounds. Depending on the StateEstimationMethod
property, either the particle with the highest weight or the mean of all particles is taken to determine
the best state estimate.

The default number of particles is 1000. Unless performance is an issue, do not use fewer than 1000
particles. A higher number of particles can improve the estimate but sacrifices performance speed,
because the algorithm has to process more particles. Tuning the number of particles is the best way
to affect your particle filters performance.

These results, which are based on the stateEstimatorPF example, show the difference in tracking
accuracy when using 100 particles and 5000 particles.
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Initial Particle Location
When you initialize your particle filter, you can specify the initial location of the particles using:

• Mean and covariance
• State bounds

Your initial state is defined as a mean with a covariance relative to your system. This mean and
covariance correlate to the initial location and uncertainty of your system. The stateEstimatorPF
object distributes particles based on your covariance around the given mean. The algorithm uses this
distribution of particles to get the best estimation of state, so an accurate initialization of particles
helps to converge to the best state estimation quickly.

If an initial state is unknown, you can evenly distribute your particles across a given state bounds.
The state bounds are the limits of your state. For example, when estimating the position of a robot,
the state bounds are limited to the environment that the robot can actually inhabit. In general, an
even distribution of particles is a less efficient way to initialize particles to improve the speed of
convergence.

The plot shows how the mean and covariance specification can cluster particles much more
effectively in a space rather than specifying the full state bounds.
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State Transition Function
The state transition function, StateTransitionFcn, of a particle filter helps to evolve the particles
to the next state. It is used during the prediction step of the “Particle Filter Workflow” on page 2-45.
In the stateEstimatorPF object, the state transition function is specified as a callback function that
takes the previous particles, and any other necessary parameters, and outputs the predicted location.
The function header syntax is:

function predictParticles = stateTransitionFcn(pf,prevParticles,varargin)

By default, the state transition function assumes a Gaussian motion model with constant velocities.
The function uses a Gaussian distribution to determine the position of the particles in the next time
step.

For your application, it is important to have a state transition function that accurately describes how
you expect the system to behave. To accurately evolve all the particles, you must develop and
implement a motion model for your system. If particles are not distributed around the next state, the
stateEstimatorPF object does not find an accurate estimate. Therefore, it is important to
understand how your system can behave so that you can track it accurately.

You also must specify system noise in StateTransitionFcn. Without random noise applied to the
predicted system, the particle filter does not function as intended.

Although you can predict many systems based on their previous state, sometimes the system can
include extra information. The use of varargin in the function enables you to input any extra
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parameters that are relevant for predicting the next state. When you call predict, you can include
these parameters using:

predict(pf,param1,param2)

Because these parameters match the state transition function you defined, calling predict
essentially calls the function as:

predictParticles = stateTransitionFcn(pf,prevParticles,param1,param2)

The output particles, predictParticles, are then either used by the “Measurement Likelihood
Function” on page 2-52 to correct the particles, or used in the next prediction step if correction is
not required.

Measurement Likelihood Function
After predicting the next state, you can use measurements from sensors to correct your predicted
state. By specifying a MeasurementLikelihoodFcn in the stateEstimatorPF object, you can
correct your predicted particles using the correct function. This measurement likelihood function,
by definition, gives a weight for the state hypotheses (your particles) based on a given measurement.
Essentially, it gives you the likelihood that the observed measurement actually matches what each
particle observes. This likelihood is used as a weight on the predicted particles to help with
correcting them and getting the best estimation. Although the prediction step can prove accurate for
a small number of intermediate steps, to get accurate tracking, use sensor observations to correct the
particles frequently.

The specification of the MeasurementLikelihoodFcn is similar to the StateTransitionFcn. It is
specified as a function handle in the properties of the stateEstimatorPF object. The function
header syntax is:

function likelihood = measurementLikelihoodFcn(pf,predictParticles,measurement,varargin)

The output is the likelihood of each predicted particle based on the measurement given. However, you
can also specify more parameters in varargin. The use of varargin in the function enables you to
input any extra parameters that are relevant for correcting the predicted state. When you call
correct, you can include these parameters using:

correct(pf,measurement,param1,param2)

These parameters match the measurement likelihood function you defined:

likelihood = measurementLikelihoodFcn(pf,predictParticles,measurement,param1,param2)

The correct function uses the likelihood output for particle resampling and giving the final state
estimate.

Resampling Policy
The resampling of particles is a vital step for continuous tracking of objects. It enables you to select
particles based on the current state, instead of using the particle distribution given at initialization.
By continuously resampling the particles around the current estimate, you can get more accurate
tracking and improve long-term performance.

When you call correct, the particles used for state estimation can be resampled depending on the
ResamplingPolicy property specified in the stateEstimatorPF object. This property is specified
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as a resamplingPolicyPFresamplingPolicyPF object. The TriggerMethod property on that
object tells the particle filter which method to use for resampling.

You can trigger resampling at either a fixed interval or when a minimum effective particle ratio is
reached. The fixed interval method resamples at a set number of iterations, which is specified in the
SamplingInterval property. The minimum effective particle ratio is a measure of how well the
current set of particles approximates the posterior distribution. The number of effective particles is
calculated by:

In this equation, N is the number of particles, and w is the normalized weight of each particle. The
effective particle ratio is then Neff / NumParticles. Therefore, the effective particle ratio is a
function of the weights of all the particles. After the weights of the particles reach a low enough
value, they are not contributing to the state estimation. This low value triggers resampling, so the
particles are closer to the current state estimation and have higher weights.

State Estimation Method
The final step of the particle filter workflow is the selection of a single state estimate. The particles
and their weights sampled across the distribution are used to give the best estimation of the actual
state. However, you can use the particles information to get a single state estimate in multiple ways.
With the stateEstimatorPF object, you can either choose the best estimate based on the particle
with the highest weight or take a mean of all the particles. Specify the estimation method in the
StateEstimationMethod property as either 'mean'(default) or 'maxweight'.

Because you can estimate the state from all of the particles in many ways, you can also extract each
particle and its weight from the stateEstimatorPF using the Particles property.

See Also
resamplingPolicyPF | stateEstimatorPF

Related Examples
• “Estimate Robot Position in a Loop Using Particle Filter”

More About
• “Particle Filter Workflow” on page 2-45
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Pure Pursuit Controller
In this section...
“Reference Coordinate System” on page 2-54
“Look Ahead Distance” on page 2-54
“Limitations” on page 2-55

Pure pursuit is a path tracking algorithm. It computes the angular velocity command that moves the
robot from its current position to reach some look-ahead point in front of the robot. The linear
velocity is assumed constant, hence you can change the linear velocity of the robot at any point. The
algorithm then moves the look-ahead point on the path based on the current position of the robot
until the last point of the path. You can think of this as the robot constantly chasing a point in front of
it. The property LookAheadDistance decides how far the look-ahead point is placed.

The controllerPurePursuit object is not a traditional controller, but acts as a tracking algorithm
for path following purposes. Your controller is unique to a specified a list of waypoints. The desired
linear and maximum angular velocities can be specified. These properties are determined based on
the vehicle specifications. Given the pose (position and orientation) of the vehicle as an input, the
object can be used to calculate the linear and angular velocities commands for the robot. How the
robot uses these commands is dependent on the system you are using, so consider how robots can
execute a motion given these commands. The final important property is the LookAheadDistance,
which tells the robot how far along on the path to track towards. This property is explained in more
detail in a section below.

Reference Coordinate System
It is important to understand the reference coordinate frame used by the pure pursuit algorithm for
its inputs and outputs. The figure below shows the reference coordinate system. The input waypoints
are [x y] coordinates, which are used to compute the robot velocity commands. The robot’s pose is
input as a pose and orientation (theta) list of points as [x y theta]. The positive x and y directions
are in the right and up directions respectively (blue in figure). The theta value is the angular
orientation of the robot measured counterclockwise in radians from the x-axis (robot currently at 0
radians).

Look Ahead Distance
The LookAheadDistance property is the main tuning property for the controller. The look ahead
distance is how far along the path the robot should look from the current location to compute the
angular velocity commands. The figure below shows the robot and the look-ahead point. As displayed
in this image, note that the actual path does not match the direct line between waypoints.
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The effect of changing this parameter can change how your robot tracks the path and there are two
major goals: regaining the path and maintaining the path. In order to quickly regain the path between
waypoints, a small LookAheadDistance will cause your robot to move quickly towards the path.
However, as can be seen in the figure below, the robot overshoots the path and oscillates along the
desired path. In order to reduce the oscillations along the path, a larger look ahead distance can be
chosen, however, it might result in larger curvatures near the corners.

The LookAheadDistance property should be tuned for your application and robot system. Different
linear and angular velocities will affect this response as well and should be considered for the path
following controller.

Limitations
There are a few limitations to note about this pure pursuit algorithm:

• As shown above, the controller cannot exactly follow direct paths between waypoints. Parameters
must be tuned to optimize the performance and to converge to the path over time.

• This pure pursuit algorithm does not stabilize the robot at a point. In your application, a distance
threshold for a goal location should be applied to stop the robot near the desired goal.

References
[1] Coulter, R. Implementation of the Pure Pursuit Path Tracking Algorithm. Carnegie Mellon

University, Pittsburgh, Pennsylvania, Jan 1990.

See Also
controllerVFH | stateEstimatorPF
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Monte Carlo Localization Algorithm

In this section...
“Overview” on page 2-56
“State Representation” on page 2-56
“Initialization of Particles” on page 2-58
“Resampling Particles and Updating Pose” on page 2-60
“Motion and Sensor Model” on page 2-61

Overview
The Monte Carlo Localization (MCL) algorithm is used to estimate the position and orientation of a
robot. The algorithm uses a known map of the environment, range sensor data, and odometry sensor
data. To see how to construct an object and use this algorithm, see monteCarloLocalization.

To localize the robot, the MCL algorithm uses a particle filter to estimate its position. The particles
represent the distribution of the likely states for the robot. Each particle represents a possible robot
state. The particles converge around a single location as the robot moves in the environment and
senses different parts of the environment using a range sensor. The robot motion is sensed using an
odometry sensor.

The particles are updated in this process:

1 Particles are propagated based on the change in the pose and the specified motion model,
MotionModel.

2 The particles are assigned weights based on the likelihood of receiving the range sensor reading
for each particle. This reading is based on the sensor model you specify in SensorModel.

3 Based on these weights, a robot state estimate is extracted based on the particle weights. The
group of particles with the highest weight is used to estimate the position of the robot.

4 Finally, the particles are resampled based on the specified ResamplingInterval. Resampling
adjusts particle positions and improves performance by adjusting the number of particles used. It
is a key feature for adjusting to changes and keeping particles relevant for estimating the robot
state.

The algorithm outputs the estimated pose and covariance. These estimates are the mean and
covariance of the highest weighted cluster of particles. For continuous tracking, repeat these steps in
a loop to propagate particles, evaluate their likelihood, and get the best state estimate.

For more information on particle filters as a general application, see “Particle Filter Workflow” on
page 2-45.

State Representation
When working with a localization algorithm, the goal is to estimate the state of your system. For
robotics applications, this estimated state is usually a robot pose. For the
monteCarloLocalization object, you specify this pose as a three-element vector. The pose
corresponds to an x-y position, [x y], and an angular orientation, theta.
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The MCL algorithm estimates these three values based on sensor inputs of the environment and a
given motion model of your system. The output from using the monteCarloLocalization object
includes the pose, which is the best estimated state of the [x y theta] values. Particles are
distributed around an initial pose, InitialPose, or sampled uniformly using global localization. The
pose is computed as the mean of the highest weighted cluster of particles once these particles have
been corrected based on measurements.
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This plot shows the highest weighted cluster and the final robot pose displayed over the samples
particles in green. With more iterations of the MCL algorithm and measurement corrections, the
particles converge to the true location of the robot. However, it is possible that particle clusters can
have high weights for false estimates and converge on the wrong location. If the wrong convergence
occurs, resample the particles by resetting the MCL algorithm with an updated InitialPose.

Initialization of Particles
When you first create the monteCarloLocalization algorithm, specify the minimum and maximum
particle limits by using the ParticleLimits property. A higher number of particles increases the
likelihood that the particles converge on the actual location. However, a lower particle number is
faster. The number of particles adjusts dynamically within the limits based on the weights of particle
clusters. This adjustment helps to reduce the number of particles over time so localization can run
more efficiently.

Particle Distribution

Particles must be sampled across a specified distribution. To initialize particles in the state space, you
can use either an initial pose or global localization. With global localization, you can uniformly
distribute particles across your expected state space (pulled from the Map property of
yourSensorModel object). In the default MCL object, set the GlobalLocalization property to
true.

mcl = monteCarloLocalization;
mcl.GlobalLocalization = true;
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Global localization requires a larger number of particles to effectively sample particles across the
state space. More particles increase the likelihood of successful convergence on the actual state. This
large distribution greatly reduces initial performance until particles begin to converge and particle
number can be reduced.

By default, global localization is set to false. Without global localization, you must specify the
InitialPose and InitialCovariance properties, which helps to localize the particles. Using this
initial pose, particles are more closely grouped around an estimated state. A close grouping of
particles enables you to use fewer of them, and increases the speed and accuracy of tracking during
the first iterations.
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These images were taken from the “Localize TurtleBot Using Monte Carlo Localization” on page 1-
159 example, which shows how to use the MCL algorithm with the TurtleBot® in a known
environment.

Resampling Particles and Updating Pose
To localize your robot continuously, you must resample the particles and update the algorithm. Use
the UpdateThreshold and ResamplingInterval properties to control when resampling and
updates to the estimated state occur.

The UpdateThreshold is a three-element vector that defines the minimum change in the robot pose,
[x y theta], to trigger an update. Changing a variable by more than this minimum triggers an
update, causing the object to return a new state estimate. This change in robot pose is based on the
odometry, which is specified in the functional form of the object. Tune these thresholds based on your
sensor properties and the motion of your robot. Random noise or minor variations greater than your
threshold can trigger an unnecessary update and affect your performance. The
ResamplingInterval property defines the number of updates to trigger particle resampling. For
example, a resampling interval of 2 resamples at every other update.

The benefit of resampling particles is that you update the possible locations that contribute to the
final estimate. Resampling redistributes the particles based on their weights and evolves particles
based on the “Motion Model” on page 2-62. In this process, the particles with lower weight are
eliminated, helping the particles converge to the true state of the robot. The number of particles
dynamically changes to improve speed or tracking.

The performance of the algorithm depends on proper resampling. If particles are widely dispersed
and the initial pose of the robot is not known, the algorithm maintains a high particle count. As the
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algorithm converges on the true location, it reduces the number of particles and increases the speed
of performance. You can tune your ParticleLimits property to limit the minimum and maximum
particles used to help with the performance.

Motion and Sensor Model
The motion and sensor models for the MCL algorithm are similar to the StateTransitionFcn and
MeasurementLikelihoodFcn functions for the stateEstimatorPF object, which are described in
“Particle Filter Parameters” on page 2-49. For the MCL algorithm, these models are more specific to
robot localization. After calling the object, to change the MotionModel or SensorModel properties,
you must first call release on your object.

Sensor Model

By default, the monteCarloLocalization uses a likelihoodFieldSensorModel object as the
sensor model. This sensor model contains parameters specific to the range sensor used, 2-D map
information for the robot environment, and measurement noise characteristics. The sensor model
uses the parameters with range measurements to compute the likelihood of the measurements given
the current position of the robot. Without factoring in these parameters, some measurement errors
can skew the state estimate or increase weight on irrelevant particles.

The range sensor properties are:

• SensorPose – The pose of the range sensor relative to the robot location. This pose is used to
transform the range readings into the robot coordinate frame.

• SensorLimits – The minimum and maximum range limits. Measurement outside of these ranges
are not factored into the likelihood calculation.

• NumBeams – Number of beams used to calculate likelihood. You can improve performance speed
by reducing the number of beams used.

Range measurements are also known to give false readings due to system noise or other
environmental interference. To account for the sensor error, specify these parameters:

• MeasurementNoise – Standard deviation for measurement noise. This deviation applies to the
range reading and accounts for any interference with the sensor. Set this value based on
information from your range sensor.

• RandomMeasurementWeight — Weight for probability of random measurement. Set a low
probability for random measurements. The default is 0.05.

• ExpectedMeasurementWeight — Weight for probability of expected measurement. Set a high
probability for expected measurements. The default is 0.95.

The sensor model also stores a map of the robot environment as an occupancy grid. Use
binaryOccupancyMap to specify your map with occupied and free spaces. Set any unknown spaces
in the map as free locations. Setting them to free locations prevents the algorithm from matching
detected objects to these areas of the map.
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Also, you can specify MaximumLikelihoodDistance, which limits the area for searching for
obstacles. The value of MaximumLikelihoodDistance is the maximum distance to the nearest
obstacle that is used for likelihood computation.

Motion Model

The motion model for robot localization helps to predict how particles evolve throughout time when
resampling. It is a representation of robot kinematics. The motion model included by default with the
MCL algorithm is an odometry-based differential drive motion model (odometryMotionModel).
Without a motion model, predicting the next step is more difficult. It is important to know the
capabilities of your system so that the localization algorithm can plan particle distributions to get
better state estimates. Be sure to consider errors from the wheel encoders or other sensors used to
measure the odometry. The errors in the system define the spread of the particle distribution.

You can specify the error expected based on the motion of your robot as a four-element vector,
Noise. These four elements are specified as weights on the standard deviations for [1]:

• Rotational error due to rotational motion
• Rotational error due to translational motion
• Translational error due to translational motion
• Translational error due to rotational motion

For differential drive robots, when a robot moves from a starting pose to a final pose, the change in
pose can be treated as:

1 Rotation to the final position
2 Translation in a direct line to the final position
3 Rotation to the goal orientation

Assuming these steps, you can visualize the effect of errors in rotation and translation. Errors in the
initial rotation result in your possible positions being spread out in a C-shape around the final
position.
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Large translational errors result in your possible positions being spread out around the direct line to
the final position.

Large errors in both translation and rotation can result in wider-spread positions.

Also, rotational errors affect the orientation of the final pose. Understanding these effects helps you
to define the Gaussian noise in the Noise property of the MotionModel object for your specific
application. As the images show, each parameter does not directly control the dispersion and can vary
with your robot configuration and geometry. Also, multiple pose changes as the robot navigates
through your environment can increase the effects of these errors over many different steps. By
accurately defining these parameters, particles are distributed appropriately to give the MCL
algorithm enough hypotheses to find the best estimate for the robot location.
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References
[1] Thrun, Sebastian, and Dieter Fox. Probabilistic Robotics. 3rd ed. Cambridge, Mass: MIT Press,

2006. p.136.

See Also
likelihoodFieldSensorModel | monteCarloLocalization | odometryMotionModel

Related Examples
• “Localize TurtleBot Using Monte Carlo Localization” on page 1-159
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Vector Field Histogram
In this section...
“Robot Dimensions” on page 2-65
“Cost Function Weights” on page 2-67
“Histogram Properties” on page 2-67
“Tune Parameters Using show” on page 2-69

The vector field histogram (VFH) algorithm computes obstacle-free steering directions for a robot
based on range sensor readings. Range sensor readings are used to compute polar density
histograms to identify obstacle location and proximity. Based on the specified parameters and
thresholds, these histograms are converted to binary histograms to indicate valid steering directions
for the robot. The VFH algorithm factors in robot size and turning radius to output a steering
direction for the robot to avoid obstacles and follow a target direction.

Robot Dimensions
To calculate steering directions, you must specify information about the robot size and its driving
capabilities. The VFH algorithm requires only four input parameters for the robot. These parameters
are properties of the controllerVFH object: RobotRadius, SafetyDistance,
MinTurningRadius, and DistanceLimits.

• RobotRadius specifies the radius of the smallest circle that can encircle all parts of the robot.
This radius ensures that the robot avoids obstacles based on its size.

• SafetyDistance optionally specifies an added distance on top of the RobotRadius. You can use
this property to add a factor of safety when navigating an environment.
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• MinTurningRadius specifies the minimum turning radius for the robot traveling at the desired
velocity. The robot may not be able to make sharp turns at high velocities. This property factors in
navigating around obstacles and gives it enough space to maneuver.

• DistanceLimits specifies the distance range that you want to consider for obstacle avoidance.
You specify the limits in a two-element vector, [lower upper]. The lower limit is used to ignore
sensor readings that intersect with parts on the robot, sensor inaccuracies at short distances, or
sensor noise. The upper limit is the effective range of the sensor or is based on your application.
You might not want to consider all obstacles in the full sensor range.
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Note All information about the range sensor readings assumes that your range finder is mounted in
the center of your robot. If the range sensor is mounted elsewhere, transform your range sensor
readings from the laser coordinate frame to the robot base frame.

Cost Function Weights
Cost function weights are used to calculate the final steering directions. The VFH algorithm considers
multiple steering directions based on your current, previous, and target directions. By setting the
CurrentDirectionWeight, PreviousDirectionWeight, and TargetDirectionWeight
properties, you can modify the steering behavior of your robot. Changing these weights affects the
responsiveness of the robot and how it reacts to obstacles. To make the robot head towards its goal
location, set TargetDirectionWeight higher than the sum of the other weights. This high
TargetDirectionWeight value helps to ensure the computed steering direction is close to the
target direction. Depending on your application, you might need to tune these weights.

Histogram Properties
The VFH algorithm calculates a histogram based on the given range sensor data. It takes all
directions around the robot and converts them to angular sectors that are specified by the
NumAngularSectors property. This property is non-tunable and remains fixed once the
controllerVFH object is called. The range sensor data is used to calculate a polar density
histogram over these angular sectors.
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Note Using a small NumAngularSectors value can cause the VFH algorithm to miss smaller
obstacles. Missed obstacles do not appear on the histogram.

This histogram displays the angular sectors in blue and the histogram thresholds in pink. The
HistogramThresholds property is a two-element vector that determines the values of the masked
histogram, specified as [lower upper]. Polar obstacle density values higher than the upper
threshold are represented as occupied space (1) in the masked histogram. Values smaller than the
lower threshold are represented as free space (0). Values that fall between the limits are set to the
values in the previous binary histogram, with the default being free space (0). The masked histogram
also factors in the MinTurningRadius, RobotSize, and SafetyDistance.
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The polar density plot has the following corresponding masked histogram plot. This plot shows the
target and steering directions, range readings, and distance limits.

Tune Parameters Using show
When working with a controllerVFH object, you can visualize the properties and parameters of the
algorithm using the show function. This method displays the polar density plot and masked binary
histogram. It also displays the algorithm parameters and the output steering direction for the VFH.
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You can then tune parameters to help you prototype your obstacle avoidance application. For
example, if you see that certain obstacles do not appear in the Masked Polar Histogram plot
(right), then in the Polar Obstacle Density plot, consider adjusting the histogram thresholds to
appropriate values. After you make the adjustments in the Masked Polar Histogram plot, the range
sensor readings, shown in red, should match up with locations in the masked histogram (blue). Also,
you can see the target and steering directions. You specify the target direction. The steering direction
is the main output from the VFH algorithm. Adjusting the “Cost Function Weights” on page 2-67 can
help you tune the output of the final steering direction.

Although you can use the show method in a loop, it slows computation speed due to the graphical
plotting. If you are running this algorithm for real-time applications, get and display the VFH data in
separate operations.

See Also
controllerVFH
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Navigation Block Examples
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Convert Coordinate System Transformations
This model shows how to convert some basic coordinate system transformations into other coordinate
systems. Input vectors are expected to be vertical vectors.

open_system('coord_trans_block_example_model.slx')
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